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Abstract

Present paper is part of Physics 450 class assignments. I start by reviewing the basic
principles of double–line perturbation expansion in random matrix theory. I calculate density
of eigenstates of a random Gaussian unitary matrix and derive WIgner’s semicircle. Next I
calculate density-density correlation function for the density of eigenvalues of random matrix.
I consider random matricies drawn from Gaussian Unitary ensemble (GUE), time–dependent
GUE, and a so-called complex Wishart ensemble (CWE). I also explain what density of states
looks like for CWE and why there is no Wigner’s semicircle. I discuss the apparent universalities
in the behavior of a correlation function and compare it to the similar quantity for Gaussian
unitary ensemble.
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1 Introduction
The outline of the paper is as follows. In section 2 main results from the paper [1] are re-derived
from the basic principles and discussed. In particular it is shown that connected density-density
correlation of eigenstates of a random matrix ϕ sampled from the so–called time–dependent Gaussian
Unitary Ensemble1 (tGUE).

P (φ) ∝ exp−N

2

ˆ ∞

−∞
dt tr

[(
dφ

dt

)2

+m2φ2

]
(1.1)

is given by the following expression [1, (2.18)]

ρc(µ, ν, t) =

〈
1

N
tr δ(µ− φ(t))

1

N
tr δ(ν − φ(0))

〉
− (1.2)

−
〈

1

N
tr δ(µ− φ(t))

〉〈
1

N
tr δ(ν − φ(0))

〉
=

=
−m

8π2N2 cos θ cosϕ

{
1 + coshm|t| cos(θ + ϕ)

[coshm|t|+ cos(θ + ϕ)]2
+

1− coshm|t| cos(θ − ϕ)

[coshm|t| − cos(θ − ϕ)]2

}
.

Here angles θ and ϕ ranging between −π
2

and π
2

parameterize energy within Wigner’s semicircle
according to z = m sin θ such that eigensates density distribution ρ(µ)dµ = 2

π
cos2 θdθ.

In section 3 similar density–density correlator is calculated for the case of time–dependent Com-
plex Wishart Ensemble (tCWE). Thus, generalizing the result of [2].

Mathematically tCWE distribution is given by the same expression (1.1), however now it is the
probability density of rectangular matrix α such that φ = α+α, while density of states (DOS) is
given by an average ρ(µ) = ⟨δ(µ− α+α)⟩ over P (α).

1Please note that the factor of N missing in [1, (2.1)] is a misprint.

2



2 Gaussian Unitary Ensemble

2.1 Wigner’s semicircle

Let me start by repeating the well-known results. In the limit of the large matrix size N → ∞
calculating averages over matrix distributions could be easily done in the framework of self–consistent
perturbative approach. Probably, the simplest example of such calculation would be the average
density of eigenstates, which is known to be given by Wigner semicircle. Let me reproduce it here.

It is useful to introduce Green’s function

G(z) =

〈
1

z − φ

〉
φ∈GUE

.

According to Sokhotsky formula and translation invariance (in matrix index), the density of states
(per node) is then given by

ρ(µ) ≡ ⟨δ(µ− φ)⟩ = −1

πN
Im trG(µ+ i0). (2.1)

Average density of states is the quantity I am going to calculate. Averaging over GUE is produced
in the following way.

D̃αβ
µν ≡

〈
φαβφ

∗
µν

〉
=

ˆ
DφP (φ)φαβφ

∗
µν (2.2)

=

ˆ N∏
i=1

dφii√
2π/Nm2

N∏
i<j

dReφij d Imφij

π/Nm2
φαβφ

∗
µν exp

[
−N

m2

2

N∑
i,j=1

|φij|2
]

=
1

Nm2
δαµδβν .

Similarly, when time dependence is present, the similar logic works in the Fourier space.

φ(t) =

ˆ ∞

−∞

dω

2π
φωe

−iωt =
1

T

∞∑
ω=−∞

φωe
−iωt.

Since φ is Hermitian, its Fourier components satisfy φ+
ω = φ−ω. Pair correlation function is given

by 〈
φω
αβφ̄

ω′

µν

〉
=

Tδω,ω′

N

δαµδβν
ω2 +m2

.

In real space it translates to

Dαβ
µν (t) ≡ ⟨φαβ(t)φ̄µν(0)⟩ =

δαµδβν
N

ˆ
dω

2π

e−iωt

ω2 +m2
=

δαµδβν
2Nm

e−m|t|

=
σ2(t)

N
δαµδβν .

Here variance σ2 is different for Please note that Dαβ
µν (0) ̸= D̃αβ

µν from (2.2).
Next I’m interested in developing perturbation theory in N ≫ 1. Let me at first formally expand

Green’s function in φ and estimate which diagrams give leading order contribution.

G(z) =
1

z

∞∑
k=0

〈
φk

zk

〉
.
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Figure 1: Several simplest contributions to the Green’s function. Solid line — bare Green’s function
G0 = 1/z, dashed line — impurity interaction line D. Here I use single dashed lines instead of double
lines for simplicity.

Obviously, only even powers give non–zero contributions. It is useful to introduce bare Green’s
function G0(z) =

1
z
, which proportional to identity matrix. In such terms,

G = G0 +G0 ⟨φG0φ⟩G0 +G0 ⟨φG0φG0φG0φ⟩G0 + . . .

It is custom to define self–energy according to

G =
1

z − Σ
⇔ G = G0 +G0ΣG.

By definition self–energy only contains irreducible contributions.

zΣ
(1)
ij = Dik

jk =
δij
2m

,

z3Σ
(2)
ij = Diα

jβD
αγ
βγ +Diα

βγD
αγ
jβ =

δij
(2m)2

[
1 +

1

N2

]
.

On the language of double–lines perturbation theory diagrams it looks like
Next step is to recognize that some contributions are negligible in the N → ∞ limit. Every

impurity line (dashed double line) contains 1/N factor, while each loop gives a factor of N , that
allows to understand what leading contributions look like. Such contributions are given by so-called
self–crossing diagrams, because interaction lines on them cross when draw in the same half–plane.
Once only the leading terms are left, all the contributions could be taken into account via single
self–consistent equation, so–called self–consistent Born approximation (SCBA).

Σij = ⟨φGφ⟩ij = Diα
jβGαβ =

δij
2Nm

trG.

Let me define g = 1
N
trG, which is simply a number. As a consequence of translation invariance

Gij = gδij. SCBA equation allows to find

g =
1

z
+

1

z

1

2m
g2 ⇐ g(z) = mz −

√
(mz)2 − 2m.

I have chosen the solution that gives positive density of states according to (2.1).

ρ(z) =
−1

π
Im g(z + i0) =

2m

π

√
1

2m
− z2

4
.

In order to get answer for time–independent case, one should just substitute 2m 7→ m2.
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Figure 2: Graphical representation of the SCBA equation. Here I use single dashed lines instead of
double lines for simplicity.

2.2 Density–density correlations

Now, I’m interested in calculating correlations of density of states. I introduce two–point Green’s
functions and express DOS–DOS correlations through them.

Gαβ
µν (z, w, t) =

〈(
1

z − φ(t)

)
αβ

(
1

w − φ(0)

)
µν

〉
,

ρ(µ, ν, t) =

〈
1

N
tr δ(µ− φ(t))

1

N
tr δ(ν − φ(0))

〉
=

−1

4π2
[g(++) + g(−−)− g(+−)− g(−+)] . (2.3)

Here G(±,±′) is a shorthand notation for N−2Gαα
ββ (µ ± i0, ν ±′ i0).Finally, I am only interested in

connected part ρc(µ, ν) = ρ(µ, ν)− ρ(µ)ρ(ν), hence a connected two–point Green’s function.

(a) (b)

(c) (d)

Figure 3: Four different ways to contract ⟨trφ4(t) trφ4(0)⟩. Each coupling is determined by how
I connect say first φ(t) in the left bubble to some particular φ(0) on the right. Other ways of
contraction (not present here) have sub–leading order in 1/N .
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gc(z, w, t) =

〈
1

N
tr

1

z − φ(t)

1

N
tr

1

w − φ(0)

〉
c

(2.4)

=
1

N2

1

zw

∞∑
m,n=0

〈
tr

(
φ(t)

z

)m

tr

(
φ(0)

w

)n〉
c

Leading order contributions to gc are given by ladder diagrams and vertex corrections with all
bare Green’s functions replaced by SCBA values G. First I calculate ladder diagrams that connect
different bubbles: they consist of contributions with m = n and φm(t) connected to φn(0) with
parallel lines. Once both loops are expanded to n–th order there are n ways to connect one loop
to another. Once I have connected some φ(t) to any of the φ(0), the diagram is fixed, there are
m = k + 1 ways to do it.

N2g(ladder)
c (z, w, t) = g2zg

2
wσ

2(t)
∞∑
k=0

(k + 1)
[
gzgwσ

2(t)
]k

=
g2zg

2
wσ

2(t)

[1− g2zg
2
wσ

4(t)]2

Figure 4: Summation of all the possible contraction from different traces in ⟨trφn(t) trφn(0)⟩.

Figure 5: Vertex renormalization.

Now I’m taking into account so-called vertex renormalizations. These diagrams also have a
ladder inserted into the same bubble. Altogether in N → ∞ limit I have

N2gc(z, w, t) =
1

1− σ2(0)g2z

g2zg
2
wσ

2(t)

[1− gzgwσ2(t)]2
1

1− σ2(0)g2w
. (2.5)

Please note a misprint in [1, (2.10)], there is an extra square. Let me rewrite the result in a simpler
form by introducing new variables. I name σ2(t) = σ2

0e
−m|t| and define angles

sin θ =
z

2σ0

, −π

2
< θ <

π

2
, when − 2σ0 < z < 2σ0,

sinϕ =
w

2σ0

, −π

2
< ϕ <

π

2
, when − 2σ0 < w < 2σ0.
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In these terms

g(z ± i0) =
1

σ2
0

[
z

2
∓ i

√
σ2
0 −

(z
2

)2]
=

∓i

σ0

e±iθ, g2(z ± i0) = −e±2iθ

σ2
0

.

g(w ± i0) =
1

σ2
0

[
w

2
∓ i

√
σ2
0 −

(w
2

)2]
=

∓i

σ0

e±iϕ, g2(w ± i0) = −e±2iϕ

σ2
0

.

Which allows for a shorter expression

N2gc(±,±′, t) =
1

8σ2
0

1

cos θ cosϕ
· 1

(±±′) + cos [im|t| ± θ ±′ ϕ]
.

Finally, I use expression (2.3) to find connected part of the density–density correlation function.

N2ρc(z, w, t) =
−1

4π2

1

8σ2
0

1

cos θ cosϕ

[
1

1 + coshm|t| cos(θ + ϕ)− i sinhm|t| sin(θ + ϕ)
+

+
1

1 + coshm|t| cos(θ + ϕ) + i sinhm|t| sin(θ + ϕ)
−

− 1

−1 + coshm|t| cos(θ − ϕ)− i sinhm|t| sin(θ − ϕ)
−

− 1

−1 + coshm|t| cos(θ − ϕ) + i sinhm|t| sin(θ − ϕ)

]
=

−1

16π2σ2
0

1

cos θ cosϕ

[
1 + coshm|t| cos(θ + ϕ)

(coshm|t|+ cos(θ + ϕ))2
+

1− coshm|t| cos(θ − ϕ)

(coshm|t| − cos(θ − ϕ))2

]
That is the final answer (1.2). When z = w energies coincide finite time smoothens the divergence

N2ρc(z, z, t) =
−1

16π2σ2
0

1

cos2 θ

[
1 + coshm|t| cos 2θ
(coshm|t|+ cos 2θ)2

+
1

1− coshm|t|

]
.

In the limit of large times correlations decay exponentially

N2ρc(z, w, t) =
tan θ tanϕ

4π2σ2
0

e−m|t|, t → ∞.

Figure 6: Diagram for the gc in large size limit.
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2.2.1 Time–independent case

Here for completeness I provide the answer for the case of time–independent ensemble. When

P (φ) ∝ exp

[
−N

2
m2φ2

]
, g(z) =

m2

2

[
z −

√
z2 − 4

m2

]
eigenstates density has the same form as before but with σ2

0 = 1/m2.

ρ(z)dz =
m2

π

√
1

m2
− z2

4
=

2

π
cos2 θdθ, z =

2

m
sin θ.

Connected Green’s function in N → ∞ limit reads

N2gc(z, w, t) =
1

1− g2z/m
2

g2zg
2
w/m

2

[1− gzgw/m2]2
1

1− g2w/m
2
.

Similarly, connected part of density–density correlations is

N2ρc(z, w, t) =
−m2

16π2

1

cos θ cosϕ

[
1

1 + cos(θ + ϕ)
+

1

1− cos(θ − ϕ)

]
.

2.2.2 Alternative derivation

Here I briefly repeat an alternative derivation of (1.2) given in [2]. Connected Green’s function from
(2.4) could be presented as

N2gc(z, w, t) = ∂z∂w ⟨tr ln(z − φ(t)) tr ln(w − φ(0))⟩c

= ∂z∂w

〈
tr ln

(
1− φ(t)

z

)
tr ln

(
1− φ(0)

w

)〉
c

= ∂z∂w

∞∑
n,m=1

1

nm

⟨trφn(t) trφm(0)⟩c
znwm

(2.6)

In the N → ∞ limit main diagrams correspond to elements with n = m where trφn(t) is connected
to trφm(0) with parallel impurity lines. By parallel I mean that if each trace is a ring of solid line,
drawn one inside the other, then dashes lines do not intersect. There are m = n ways to connect
lines in such way. Hence

N2gc(z, w, t) = ∂z∂w

∞∑
n,m=1

δnm
nm

m

znwm
σ2m(t)

= −∂z∂w ln

(
1− σ2(t)

zw

)
.

All that I am missing is contributions inside the same trace which lead to renormalization of bare
Green’s functions to SCBA values 1

z
7→ g(z). Finally,2

N2gc(z, w, t) = −∂z∂w ln
(
1− σ2(t)gzgw

)
=

g′zg
′
wσ

2(t)

[1− σ2(t)gzgw]2

2I note that there is a missing minus sign in [2, (22)].
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In order to see that the present result coincides with (2.5) I need an expression for the derivative of
SCBA Green’s function which follows from SCBA equation.

z =
1

g
+ σ2

0g ⇒ g′z =
−g2

1− σ2
0g

2
.

In order to see how two derivation correspond to one another, one should note that differentiation of
a bare Green’s function ∂g0(z) = ∂ 1

z
= − 1

z2
= −g20(z) is proportional to square of Green’s function.

Arbitrary diagram from sum (2.6) with dressed Green’s function should be presented as the sum
SCBA Green’s functions and then differentiated. It is also clear why such approach does not require
separate vertex correction, which is needed in the Berezin–Zee calculation [1].

Figure 7: Different way to contract ⟨trφ4(t) trφ4(0)⟩ follow from that picture by rotating one of
the ring with respect to the other. Diagrams on Figure 3 are produced by differentiating one of the
Green’s function in each ring.
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3 Complex Wishart Ensemble
In literature one may also encounter another way to introduce Gaussian random matrix ensemble. In
contrast to unitary, orthogonal and symplectic ensembles, there is also so–called Complex Wishart
Ensemble (CWE). The random matrix (Hamiltonian) is the product of two not necessary square,
not Hermitian (just complex) matricies φ = α+α.

⟨. . .⟩ =
ˆ N∏

i,j=1

dαij ∧ dα∗
ij

2πi
. . . exp

(
−N

σ2
0

N∑
i,j=1

|αij|2
)
,

dz ∧ dz∗

2πi
≡ dRe z d Im z

π
.

Pair correlator in that case reads 〈
α∗
ijαkl

〉
= ⟨αijα

∗
kl⟩ =

σ2
0

N
δikδjl.

3.1 Density of states

I start by deriving the density of eigenstates (per node) in large matrix size limit.

ρ(µ) ≡
〈
δ(µ− α+α)

〉
=

−1

πN
Im trG(µ+ i0).

Green’s function G should be expanded, then analyse which terms produce the largest contribution.

G = (G−1
0 − φ)−1 = G0 +G0φG0 +G0φG0φG0 + . . . , φ = α+α.

On Figure 8 I present all the contributions up to φ3.

Figure 8: First three order of Green’s function’s expansion. Here I use single dashed lines instead
of double lines for simplicity.

Below I analyse all the third order terms, the diagrams have the following analytic expressions.〈
G0α

+αG0α
+αG0α

+αG0

〉
= G0

〈
α+α

〉
G0

〈
α+α

〉
G0

〈
α+α

〉
G0 ∝ N ·N ·N ·G4

0

+G0

〈
α+ ⟨αG0α

+
〉
α⟩G0

〈
α+α

〉
G0 +N · trG0 ·N ·G3

0

+G0

〈
α+α

〉
G0

〈
α+ ⟨αG0α

+
〉
α⟩G0 +N · trG0 ·N ·G3

0

+G0

〈
α+ ⟨αG0

〈
α+α

〉
G0α

+
〉
α⟩G0 +N · trG2

0 ·N ·G2
0

+G0

〈
α+
〈
αG0α

+
〉〈
αG0α

+
〉
α⟩G0 +N · trG0 · trG0 ·G2

0

+G0α
+αG0α

+αG0α
+αG0 +G4

0.
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Out of 3! = 6 possible contractions only 5 contribution have the same (largest) order in NG0 = N/ε,
while one term is small — it could be thrown away. That allows to write down Self–consistent Born
approximation (Fig. 9).

Figure 9: Self–consistent Born (SCBA) equation for Green’s function G. Here I use single dashed
lines instead of double lines for simplicity.

Diagrams structure is such that self–energy could not be simply expressed through the Green’s
function as usual, but the whole series of Green’s functions and impurity lines is required instead.
That is why it is convenient to introduce new entity f – number that is contained inside the self–
energy (under the impurity line rainbow).

G = G0 +G0 · σ2
0f ·G.

Within SCBA, number f is given the series presented on Figures 9 and 10.

Figure 10: Graphical representation of number f .

f = 1 +
σ2
0

N
trG+

σ2
0

N
trG · σ

2
0

N
trG+ · · · = 1

1− σ2
0

N
trG

=
1

1− σ2
0g

.

Apparently matrix G is diagonal Gij = gδij, so I introduce Gij
0 = g0δ

ij, which allows to write
equation on g.

g = g0 + g0 · σ2
0f · g = g0 + g0

σ2
0

1− σ2
0g

g.

Retarded solution on SCBA Green’s function is

g(ε) =
1

2σ2
0

(
1− i

√
4σ2

0

ε
− 1

)
.
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That finally allows to find density of states (per node).

ρ(ε) =
−1

πN
Im trG =

θ(ε)θ(4σ2
0 − ε)

2πσ2
0

√
4σ2

0

ε
− 1.

I note that total number of states is correct
´
ρ(ε)dε = 1. It is clear that there are no states for

negative energies by design. However the absence of eigenvalues with ε > 4σ2
0 is a byproduct of large

N approximation. Actually, there is an exponentially small (in N) number states for ε > 4σ2
0.

3.2 Density–density correlations

Here I calculate the correlations of density for CWE in analogy for what was done in the previous
section for GUE. That calculation is taken from [2]. Now that all the preliminary work is done, it
is quite straightforward to generalize the result on the case of CWE.

Density–density correlations are most easily computed through the ∂ −− log formula.

N2gc(z, w) = ∂z∂w
〈
tr ln(z − α+α) tr ln(w − α+α)

〉
c

= ∂z∂w

∞∑
n,m=1

1

nm

⟨tr(α+α)n tr(α+α)m⟩c
znwm

.

Figure 11: Feynman diagram for ⟨tr(α+α)4 tr(α+α)4⟩c.

Similar to the GUE case there are n ways to couple ⟨tr(α+α)n tr(α+α)n⟩c. Contractions within
the same trace renormalize bare Green’s function but also renormalize the parallel double impurity
lines inside by multiplying each on fz and fw respectively.

N2gc(z, w) = −∂z∂w ln

(
1− σ4

0

gz
1− σ2

0gz

gw
1− σ2

0gw

)
=

σ4
0g

′
zg

′
w

(1− σ2
0gz − σ2

0gw)
2

In order to simplify that expression I compute the derivative implicitly using SCBA equation.

z =
1

g
+

σ2
0

1− σ2
0g

=
1

g(1− σ2
0g)

⇒ g′z = − 1− 2σ2
0g

g2(1− σ2
0g)

2
.
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4 Conclusion
I have reproduced calculation of density–density correlation function for the Gaussian Unitary En-
semble [1] and Complex Wishart Ensemble [2].
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