There are several defintions of optimal estimator.

1. Maximum Likelihood Estimator (MLE): An estimator that maximizes the likelihood function,
making it the most probable given the observed data.

max P [y = 7]
Usually there is a dataset {y”} of i = 1,..., N measured y values. In this case, we maximize
joint probability
max P [y(l) =i,...,yN = :i“]
2. Least Squares Estimator (LSE): An estimator that minimizes the expected value of the squared
differences between the estimator and the true parameter value.

minE [(& — z)?]

T

Since expectation value of squares can be decomposed into square of expected value and variance
(so—called bais—variance decomposition),

E[(& —)*] = (E[& — ])* + Var 2]

minimizing squared errors is equivalent to having no bias E [Z] = x and it has the lowest variance
among all unbiased estimators, so it is also called Minimum Variance Unbiased Estimator (MVUE).

These two definitions are not the same. MLEs are not necessarily unbiased. Consider normally
ditributed variable y ~ A (i, 0?), then estimator for y is the same according to both definitions
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However, estimators for variance are different

N

. 1 . . 1 .

e = > (1" =) Phavos = g 2 (07 =)
=1 i=



Question 1 Consider random variables

ylzx_’_nla

Y2 = N1 + N2

where n; ~ N(0,0%), ng ~ N(0,03) are independent normally distributed random variables and x
is a parameter. What is an expression for optimal estimator z7

Solution 1

Least Squares Estimator (LSE) Assume that answer is given by linear combination yz = y1+0y2
with yet undetermined coefficient 8. Expected value E[ys] = x, so average value

(ys) N Zyﬁ

is an unbaised estimator for x indepedently of value of 5.
However, optimal estimator should not only have zero bias, but also have minimal variance.

Var[yg] = E [(yg — m)Q] =E [(nl + Blny + n2])2] )

0
a3 Varlys] = E [(n1 + Blna + na]) (1 + na)] = of + B(o] + 03)
Minimizing variance over 3 we find 8 = —c}/(0% + 02) and finally bias—free and minimal-variance

estimator for x would be
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Maximum Likelihood Estimator (MLE) Alternatively, we could use likelihood maximum as
criterion for optimal estimator. Let us consider y3 = y; — y2 = x — ny. Probability distribution of
datastream {y\”, 4"} happening is
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Finding maximum of log—likelihood with respect to x we come to
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Remebering that (y3) = (y1) — (y2) we see that MLE is the same as MVUE (1) above.



Question 2 Consider random variables y; = x + n; and yo = ny + ny, where ny ~ N(0,0%),
ng ~ N(0,03) and = ~ N (zp,02) are independent random variables. What is the optimal estimator

for x¢?
Solution 2

Least Squares Estimator (LSE) Again, let y3 = y; + [y, average (ys) is a bias—{ree estimator
for xy for any value of 5 since E [yg] = E [z] = x¢. Let’s minimize variance of our estimator.

Varlys] = E [(yﬁ - 5170)2} =E [(nl +x —x0+ Bl + n?])ﬂ ;

%Var[yg] =E[(n1 +x — 2o + Bln1 + na])(n1 + n2)] = 07 + (o7 + 03) =0

So the answer is same as before (1)

Maximum Likelihood Estimator (MLE) Let’s introduce ng ~ N(0, 02), then y; = x¢+mn; +ng
and yo = ny + ny. Probability of given dataset is
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Here we use notation
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Condition for optimal estimator dlog P/dxo = 0 gives
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We come to the result that estimator is the same as before (1).



Question 3 Consider random variables y; = x + n; and yo = ny + ny, where ny ~ N(0,0%),
ng ~ N(0,0%) and x ~ N(0,02) are independent random variables. What is the optimal estimator
for o7

Solution 3

Maximum Likelihood Estimator (MLE) Using calculation from before
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Let’s remeber that
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So we end up with
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It is a cubic equation in o2, so I can’t solve it analytically.



