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Problem 6.1 (Universal optical conductivity of graphene — 12 points). Electrons in graphene
are described by effective Hamiltonian
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Here v ~ 10° m/s is Fermi velocity, Pauli matrices &; represent sub-lattice degree of freedom,
and p is momentum operator.

1. (8 points) Calculate conductivity of graphene o(w) at optical frequencies, assuming charge
neutrality, 7" = 0 and no scattering 7 — oo.

(a)

(b)
(c)

(1 point) Find energies ¢, and eigenfunctions |s, p) of Hamiltonian Hy. They are
labeled by two quantum numbers: (quasi)momentum p and band index s = . How
should you normalize eigenfunctions (s',p’ |s, p) =7

(2 points) Compute velocity operator v = 8]310/815.

Hint. You should get 2 x 2 matrix in s—space.

(5 points) Using time-dependent perturbation theory compute linear response to
applied electric field E coswt, which you can treat as perturbation

H=Hy+V, V=|e|(E r)d(t)coswt.

Hint. The most straight—forward way to tackle this calculation is with Kubo formula

10 =5 [ o (50 “p)

here operators V and v are in interaction representation. Alternatively, you could
approach this calculation old—fashioned way, and derive analog of |1, (13.37)]. It may
be helpful to compare your calculation with what you can find in the literature [2].

/0 [Vi(r), 91())dr

You should obtain a beautiful result known as universal optical conductivity (remember to
include spin and valley doubling in your calculation).

2

= (6.1.1)

o(w)

Remarkably, this result holds true for real graphene as long as w > 771, T [3].
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2. (4 points) Using result (6.1.1) calculate transmittance 7" for normal incidence on a single
sheet of graphene in vacuum. What value do you expect for T7 Take a look at the photo
of graphene Fig la and check your intuition.

Hint. Problem is fully described by Maxwell’s equations, boundary conditions, continuity
equation and Ohm’s law j = 0¢d(z)E.

(a) Optical photo of monolayer graphene (MLG) and bi-
layer graphene (BLG) on silicone substrate.

(b) Interaction of light with electrons
in graphene (schematically) |3]

Figure 1: Illustrations for optical conductivity of graphene.

Problem 6.2 (Graphene conductivity — 10 points). In this problem we will describe electron
transport in graphene using relaxation time approximation |1, (13.22)]

Ofp _ fo— 13 . / e
cE op - , j=e pvpfp, Vp = ap

1. (3 points) Derive an expression for conductivity o = o(p, T') within 7—approximation.
2. (3 points) Derive a relation between carrier density n and chemical potential .

3. (4 points) Compare your formula to experimental data presented on Fig. 2. How well this
oversimplified model explains the data? Extract value of 7300k, would you say it’s a short
or a long relaxation time? Data is available online.
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Figure 2: Resistivity of graphene vs carrier density [/].
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Problem 6.3 (Landau levels in graphene — 10 points). Just like free electrons, quasielectrons
in crystal experience Lorentz force in the presence of magnetic field, however, having non—free—
electron—like dispersion introduces some differences. As you remember from classical mechanics,
in the presence of magnetic field, we differentiate between canonical (generalized) momentum
p and kinetic (covariant) momentum 7 = p — A, where electron charge e = —|e| is negative.
Similar to free—electron case, effective quantum Hamiltonian for quasielectrons in field, is achieved
through canonical quantization of p = —iAV, which is justified by Peierls substitution.
- . . . le
H=v(e-7)=v (cr,p+uA> : A = (—By,0,0). (6.3.1)
c
1. (4 points) Solve semi-classical equations' of motion for electrons in magnetic field directed

perpendicular to graphene plane B = Be,. Use Landau gauge.
r= Vﬂ'gs,ﬂ”
. €.
7 = [t x B|.
c

What is the expression for cyclotron frequency w.? Find Landau levels ¢,, for electrons and
holes using semiclassical quantization condition

% p - dr = 27hn.
e(p,r)=en

2. (6 points) Solve stationary Schrédinger problem for Hamiltonian (6.3.1).

(a) (3 points) Find energies ¢,, and eigenvectors v, ;. You can use harmonic oscillator
functions (a.k.a normalized Hermite functions) 1°*°(z) in your answer.

wOSC( ) 671‘2/2Hn(x>
(r) = ——=".
V 2mnl/m
Pay attention to zeroth Landau level. Which eigenvector does it correspond to?

(b) (2 points) Compute energy difference between zeroth and first Landau level at B =1
T. Express your answer in Kelvins.

(c¢) (1 point) What is the degeneracy g,, of n—th Landau level?
3. (0 points) Find several low (|n| < 10) Landau levels numerically using method described

in [6]. You once again have problems with the lowest Landau level, what is the reason for
it this time?

Problem 6.4 (Graphene diode — 11 points). Consider n—p junction along z direction in
graphene with symmetric electron and hole densities (see Fig.3) at absolute zero T = 0.

A

Hip =0, H=v(6 -p)+ep(x), e<O.

Junction potential V' (z) could be induced either through chemical doping or through electrostatic
gating. In this problem we will consider two models for V' (z).

(a) Step—function p(x) = —Vysgn(z), Vo > 0.
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Figure 3: Energy profile in graphene n—p junction.

(b) Linear function ¢(|z| < d) = —Vox/d and p(|z| > d) = —Vsgn(z), kpd > 1.
For each of the two types of potential do the following:

1. (6 points) Find transmission coefficient for different incident angles 7'(Vp, k,) by solving
standard scattering problem

Y(r — —o0) = (z) + 1Y (2), P(r — 4o00) =1t - (x).

Hint. For the case of linear potential (b) instead of solving the problem exactly, calculate
transmission amplitude in WKB approximation.

B o e2
=St s [Cw@ldn o) =S - 5

—x0

where ¢(z) is semiclassical momentum, and integral for tunneling action is computed be-
tween classical turning points determined from g¢(£xz() = 0.

2. (5 points) Calculate ballistic conductance of the diode using Landauer formula
2
G(o) = 5~ ;T(Vo, ky),

and find IV characteristic of graphene diode I = G(V,+ V)V, does it look as you expected?
Plot current versus voltages in range —0.1 V to +0.1 V, assuming sample width W = 10
pm, symmetric concentration of carriers n = p = 7.5 - 101t cm=2, velocity v = 10° m/s and
junction half-length d = 50 nm.

3. (0 points) Imagine an opening of a huge gap ﬁgapped = H + Ao, with A = 72 meV and
the same carrier density. How does it change your answers?
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