«Introduction to Wolfram Mathematica»

David Saykin

Skoltech, mailto: saykind@itp.ac.ru

Last compilation: February 15, 2018

1 Assignment on «Patterns & Replacements»

Problem 1.1. Create a function with the same functionality as Coefficient using replacements.

$$myCoefficient[expr_, form_] := \dots$$

Problem 1.2. Construct a ComplexityFunction that prefers $\sin^n(x)$ and $\cos^n(x)$ instead of $\sin(nx)$ and $\cos(nx)$. Simplify $\cos(4x)$ using it.

$${\tt Simplify}\left[{\tt Cos}[4z], {\tt ComplexityFunction} \rightarrow f[\#]\&)\right]$$

2 Assignment on «Numerical computations»

Problem 2.1. Solve Korteweg de-Vries equation

$$u_t + u_{xxx} + 6uu_x = 0$$

with two-soliton initial condition

$$u|_{t=0} = \operatorname{ch}^{-2}\left(\frac{x-5}{\sqrt{2}}\right) + \frac{3}{2}\operatorname{ch}^{-2}\left(\frac{x+5}{2/\sqrt{3}}\right)$$

and periodic boundary conditions (for u, u_x and u_{xx}). Animate the solution. Do solitons interact or pass through each other without a change?

Problem 2.2. Consider the following integral as a function of parameter a.

$$J(a) = \int_0^{10} \frac{dx}{\text{ch}[(x-a)^2]}.$$

From analytical reasons it is obvious that J(a) has maximum at a=5. Try to obtain such result using NMaximize with 10-digits precision. Notice that due to very small derivate near the maximum, precision of maximum point a_{max} is much smaller than precision of maximum value $J(a_{\text{max}})$. Construct a function that finds point of maximum with given n-digits precision.

3 Assignment on «Visualization»

Problem 3.1. Consider some non-trivial function, e.g. a sum of a Bessel and Airy functions $f(x) = J_1(x) + \text{Ai}(-x)$. Find (numerically) its zeros and extrema and plot them combined with the function.

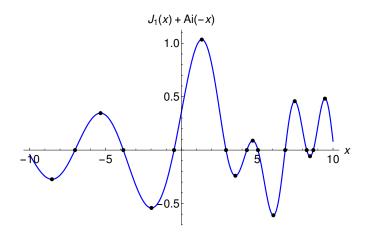


Figure 3.1: Illustration to the problem 3.1

Problem 3.2. Consider some analytic function of complex variable, e.g.

$$f(z) = \frac{z^4}{4} + \frac{z^2}{2} + e^{i\pi/3}z, \quad z \in \mathbb{C}.$$

Its real part Re f(z) as a function of z = x + iy has saddle points at $f'(z_0) = 0$ and the lines of steepest descent and ascent from this points may be found from condition Im $f(z) = \text{Im } f(z_0)$. Find all such points and corresponding curves and plot them combined as pictured below.

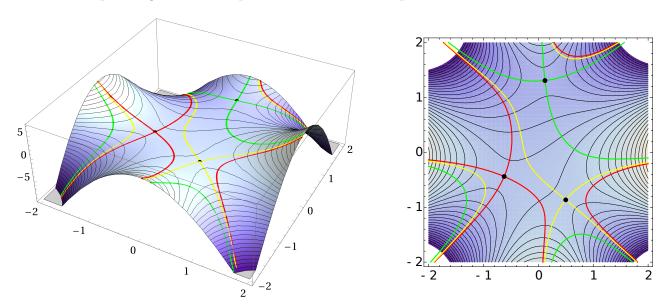


Figure 3.2: Illustration to the problem 3.2

4 Assignment on «Eigenproblems»

Problem 4.1. Consider a Pöschl–Teller potential.

$$-\psi''(x) + \psi(x) - \frac{3}{2} \frac{\psi(x)}{\cosh^2 x} = \lambda \psi(x), \quad \psi(\pm \infty) = 0;$$

It is easy to see that it has two bounded states

$$\psi_0(x) = \sqrt{\frac{3}{8}} \frac{1}{\cosh^2 \frac{x}{2}}, \quad \psi_1(x) = \sqrt{\frac{3}{4}} \frac{\sinh \frac{x}{2}}{\cosh^2 \frac{x}{2}}$$

with energies $\lambda_0 = 0$, $\lambda_1 = \frac{3}{4}$. Let's practice numerical methods of finding its eigensystem.

- 1. Can DEigensystem find these solutions?
- 2. Solve eigenproblem using NDEigensystem.
- 3. Solve eigenproblem using ParametricNDSolve.
- 4. Solve eigenproblem in finite matrix representation (using Hermite basis).

Compare results with each other and with an exact ones.

Assignment on «Applications in Theoretical Physics» \mathbf{X}

Problem X.1 (Wick's theorem). Consider a function of order parameters $\varphi_1, \varphi_2, \ldots$, all of which are normally distributed with zero mean and known variance $\langle \varphi^2 \rangle$, so that

$$\langle \exp \varphi \rangle = \int d\varphi \exp \left(-\frac{\varphi^2}{2 \left< \varphi^2 \right>} \right) \exp \varphi = \exp \left[\frac{1}{2} \left< \varphi^2 \right> \right].$$

Your task is to deal with expression containing exponential and trigonometric functions of order parameters, such as

$$\langle \cos \varphi_1 \cos \varphi_2 \rangle = \exp \left[-\left\langle \varphi^2 \right\rangle \right].$$

Problem X.2 (Heisenberg antiferromagnet). Consider Heisenberg antiferromagnetic Hamiltonian with periodic boundary conditions

$$\hat{H} = \sum_{k=1}^{N} \hat{\mathbf{s}}_k \cdot \hat{\mathbf{s}}_{k+1}, \quad N+1 = 1.$$

Find the spectrum of \hat{H} for $s=\frac{1}{2}$ and $N=2,3,\ldots$, as well as for s=1 and $N=2,3,\ldots$ How large N can you achieve?

Extrapolate the ground state energy divided by number of spins E_0/N and the value of the gap

$$\Delta \rightleftharpoons \min_{E \neq E_0} E - E_0$$

to large $N \to \infty$ for $s = \frac{1}{2}$ as well as s = 1. Answer the following questions:

- 1) Is it correct that for $s = \frac{1}{2} \lim_{N \to \infty} E_0/N = \frac{1}{4} \ln 2$? 2) What is the value of $\lim_{N \to \infty} E_0/N$ for s = 1?
- 3) Does the gap closes with $N \to \infty$ for $s = \frac{1}{2}$? for s = 1?

Problem X.3 (Landau levels in graphene). In the tight binding approximation effective Hamiltonian of graphene can be written as

$$H = \begin{pmatrix} 0 & \sum_{n=1}^{3} e^{i\mathbf{k}\delta_n} \\ \sum_{n=1}^{3} e^{-i\mathbf{k}\delta_n} & 0 \end{pmatrix} \qquad \boldsymbol{\delta}_1 = \frac{1}{2} \begin{pmatrix} \sqrt{3} \\ -1 \end{pmatrix} \quad \boldsymbol{\delta}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \boldsymbol{\delta}_3 = \frac{-1}{2} \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$$

Presence of magnetic field can be accounted for via Peierls substitution $\mathbf{k} \mapsto \mathbf{k} - \frac{e}{c}\mathbf{A}$, where \mathbf{A} is a vector potential. Find energy levels in graphene in magnetic field as a function of k for different orientations of the field $\mathbf{B} \parallel Oz$, Ox, Oy.

Problem X.4 (Hubbard model). One of the rich model describing different phenomena in solid state physics is Hubbard model

$$\hat{H} = -t \sum_{\langle ij \rangle} \sum_{\sigma} c_{\sigma}^{+}(i) c_{\sigma}(j) + u \sum_{i} c_{\uparrow}^{+}(i) c_{\uparrow}(i) c_{\downarrow}^{+}(i) c_{\downarrow}(i).$$

Fermions live on $N \times N$ lattice with periodic boundary condition (try N = 2, 3). Here, I simply ask you to find quantum-statistically averaged number of fermions on the site

$$\left\langle c_{\uparrow}^{+}(i)c_{\uparrow}(i)\right\rangle \propto \mathrm{tr}\left[e^{-\beta\hat{H}}c_{\uparrow}^{+}(i)c_{\uparrow}(i)\right]$$

as a function of temperature $T = \frac{1}{\beta}$.

Problem X.5 (Over-barrier reflection). Find the transmission coefficient for the over-barrier reflection in the potential $V(x) = -x^4$. In other words, you need to obtain solution of

$$\left[\frac{d^2}{dx^2} + x^4 + \varepsilon\right]\psi(x) = 0$$

that asymptotically behaves as

$$\psi(x) \sim t \cdot \frac{\exp \int_0^x \sqrt{\varepsilon - x^4}}{x}, \quad x \to \infty.$$

and then connect it with the behavior at the left end.

$$\psi(x) \sim \frac{\exp \int_0^x \sqrt{\varepsilon - x^4}}{x} + r \cdot \frac{\exp - \int_0^x \sqrt{\varepsilon - x^4}}{x}, \quad x \to -\infty.$$

Problem X.6 (Anderson model). Simplest model describing impurities in conductors uses Hamiltonian

$$H = \sum_{i} \varepsilon_{i} c_{i}^{+} c_{i} - t \sum_{\langle ij \rangle} c_{i}^{+} c_{j},$$

where fermion operators c_i are located on a line of size N with periodic boundary conditions. Disorder is presented via local «energies», which are uniformly distributed in [-W, W] interval. Find (averaged) density of states in such model.