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Comment. Note that since these lecture notes are part of a manuscript, much of the language
used here follows that of a book, with reference to chapters, sections, etc. In addition, some
material in the notes may be more advanced, or will not directly be related to discussions in class.
Please view these parts as stimulating extensions, where you are welcome to contact us about
questions and relevant references.

Problem 1.1 (Specific heat — 1 point). The specific heat of a solid, at low temperatures,
generally depends on a power of the temperature,

𝐶 ∝ (𝑇/𝑇0)
𝑥𝑐 for 𝑇 ≪ 𝑇0.

In a metal or an insulating glass, 𝑥𝑐 = 1 while in a crystalline insulator, 𝑥𝑐 = 3. Prove that the
third law of thermodynamics implies that 𝑥𝑐 > 0.

Remark. As a point of mathematical nicety, the third law actually permits 𝐶 to vanish more
slowly than any power law; for instance, 𝐶 ∝ log−𝛼[𝑇0/𝑇 ] with 𝛼 > 1.)

Problem 1.2 (Bulk modulus — 2 points). The bulk modulus of a crystal is given by

𝐵 = −𝑉
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

where 𝑉 is the volume and 𝑃 is the pressure. The pressure is given as the first derivative of the
free energy with respect to volume. However, at zero temperature, it is given purely in terms of
the total energy of the solid 𝑃 = −𝑑𝑈/𝑑𝑉 .

Let us consider again an ionic crystal with NaCl structure as in Fig. 1. Define 𝑢𝑖 = 𝑈𝑖/𝑁 and
𝑣 = 𝑉/𝑁 as the energy and volume per particle. Show that the bulk modulus for such a crystal
is given by

𝐵 =
1

9𝑅0

𝑑2𝑢

𝑑𝑅2
|𝑅=𝑅0 ,

where 𝑅0 is the equilibrium nearest-neighbor separation.
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Figure 1: Crystal structure of NaCl.

Problem 1.3 (Madelung constant — 3 points). NaCl is an ionic crystal which is a type of
crystal made up of positive and negative ions, such that the Coulomb attraction between ions of
opposite sign is stronger than the Coulomb repulsion between ions of the same sign. Obviously,
charge neutrality is maintained in each unit cell.

While “attraction wins” within a unit cell, there is also short-range repulsion so that ions do
not collapse into each other. Ion-ion interaction can be written as

𝑈𝑖𝑗 = 𝑈0𝑒
−𝑟𝑖𝑗/𝜆 + (−)𝑖−𝑗 𝑒

2

𝑟𝑖𝑗
, 𝑟𝑖𝑗 ≡ |r𝑗 − r𝑖|

Since 𝜆 . 𝑅 — distance between the nearest neighbors, repulsion term is only relevant for
neighboring ions. Hence, energy that includes interaction with 𝑖–th ion is given by the sum

𝑈𝑖 ≈ 𝑧𝑈0𝑒
−𝑅/𝜆 +

∑︁
𝑗 ̸=𝑖

(−)𝑖−𝑗 𝑒
2

𝑟𝑖𝑗

= 𝑧𝑈0𝑒
−𝑅/𝜆 + 𝛼𝑖

𝑒2

𝑅
, 𝛼𝑖 ≡

∑︁
𝑗 ̸=𝑖

(−)𝑖−𝑗𝑅

|r𝑖 − r𝑗|

Here 𝑧 is a coordination number (number of closest neighbors) and 𝛼𝑖 = 𝛼 is a dimensionless
number called Madelung constant.

1. (1 point) Find an expression for the equilibrium separation 𝑅 in terms of the potential
parameters 𝑈0, 𝜆 and 𝛼 (no need to solve for 𝑅).

2. (1 point) Calculate 𝛼 for a one dimensional NaCl crystal.

3. (1 point) Calculate the first few terms in 𝛼 for the 3-dimensional case. What can you say
about the convergence of the sum (rigorous mathematical answer is not required)?

Problem 1.4 (Valence bonding — 3 points). In this problem we will explain the quantum nature
of valence bonding using the simplest example of a hydrogen molecule. Following the calculation
of W. Heitler and H. London (1927) we would use an adiabatic approximation and a first–order
perturbation theory to calculate the energy of a 𝐻2 molecule as a function of the distance between
the atoms.
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Consider the Hamiltonian of the hydrogen molecule.

�̂� = �̂�1 + �̂�2 + 𝑉 ,

�̂�1 =
𝑝21
2𝑚

− 𝑒2

𝑟1𝐴
,

�̂�2 =
𝑝22
2𝑚

− 𝑒2

𝑟2𝐵
,

𝑉 = − 𝑒2

𝑟1𝐵
− 𝑒2

𝑟2𝐴
+
𝑒2

𝑟12
+
𝑒2

𝑅
.

Here 𝑚 is the electron mass and we have neglected the kinetic energy of the Hydrogen nuclei
exploiting the fact that 𝑚𝑒 ≪𝑀nucl (adiabatic approximation). The distance between the atoms
𝑅 ≡ 𝑟𝐴𝐵 enters the Hamiltonian as a parameter. We have divided our Hamiltonian in three parts
such that 𝑉 could be considered as perturbation to �̂�1,2 when the distance between the atoms is
large 𝑅 ≫ 𝑟1𝐴, 𝑟1𝐵.

HA

e1

HB

e2R

r1A

r2B

Figure 2: Notation used in the problem 1.4.

We are interested in calculating the ground state energy 𝐸 satisfying Schrodinger eigenproblem

�̂�Ψ(r1, r2) = 𝐸Ψ(r1, r2).

In zeroth order approximation each electron is orbiting around separate atoms in 1𝑠 state (what is
an expression for 1𝑠 orbital?). We know that the total wavefunction (including spin) of fermions
has to be anti–symmetric. Two spins could form a singlet 𝑆 = 0 or a triplet 𝑆 = 1, which
corresponds to symmetric and anti–symmetric orbital wavefunctions respectively.

Ψ𝑠(r1, r2) = 𝐶𝑠 [𝜓𝐴(r1)𝜓𝐵(r2) + 𝜓𝐴(r2)𝜓𝐵(r1)] ,

Ψ𝑎(r1, r2) = 𝐶𝑎 [𝜓𝐴(r1)𝜓𝐵(r2) − 𝜓𝐴(r2)𝜓𝐵(r1)] ,

Wavefunction 𝜓𝐴(r1)𝜓𝐵(r2) corresponds to the picture represented on Figure 2 and 𝜓𝐴(r2)𝜓𝐵(r1)
describes the state with electrons swapped between the atoms.

Using these functions as correct zeroth–order states, calculate first–order corrections to the
energies of the symmetric and anti–symmetric states following the steps outlined below. Please
express your answer in terms of integrals

𝑆 = |⟨𝜓𝐴| 𝜓𝐵⟩|2 =

⃒⃒⃒⃒ˆ
𝜓*
𝐴(r)𝜓𝐵(r)𝑑r

⃒⃒⃒⃒2
,

𝑊 =

ˆ
𝜓*
𝐴(r1)𝜓

*
𝐵(r2)𝑉 (r1, r2, 𝑅)𝜓𝐴(r1)𝜓𝐵(r2) 𝑑r1𝑑r2,

𝑌 =

ˆ
𝜓*
𝐴(r2)𝜓

*
𝐵(r1)𝑉 (r1, r2, 𝑅)𝜓𝐴(r1)𝜓𝐵(r2) 𝑑r1𝑑r2.
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What is the classical meaning of 𝑊? Is there a classical analogue of 𝑆?

1. (1 point) Calculate normalization constants 𝐶𝑠 and 𝐶𝑎 in terms of 𝑆.

2. (2 points) Calculate first–order energy corrections ∆𝐸𝑠 and ∆𝐸𝑎 in terms of 𝑆, 𝑊 and 𝑌 .

3. (BONUS — 0 points) Using explicit expressions for integrals 𝑆, 𝑊 , 𝑌 given below, plot
(sketch) expressions for ∆𝐸𝑠 and ∆𝐸𝑎 as a function of interatomic distance 𝑅. Find the
distance 𝑅* that corresponds to the minimum of ∆𝐸𝑠 in terms of Bohr’s radius 𝑎𝐵.

𝑆 = ∆2, ∆ = 𝑒−𝑅

(︂
1 +𝑅 +

𝑅2

3

)︂
, 𝛿 = 𝑒𝑅

(︂
1 −𝑅 +

𝑅2

3

)︂
,

𝑊 = − 1

𝑅
+ 𝑒−2𝑅

(︂
1

𝑅
+

5

8
− 3

4
𝑅− 𝑅2

6

)︂
,

𝑌 = −2∆𝑒−𝑅 (1 +𝑅) − 𝑒−2𝑅

5

[︂
−25

8
+

23

4
𝑅 + 3𝑅2 +

𝑅3

3

]︂
+

+
6

5𝑅

[︀
∆2(𝛾 + ln𝑅) + 𝛿2 Ei(−4𝑅) − 2∆𝛿 Ei(−2𝑅)

]︀
Energies and distances are given in atomic units 𝐸𝑎 = 𝑒2/𝑎𝐵 = 2 Ry, 𝑎𝐵 = ~2/𝑚𝑒2.

Remark. Interestingly, such calculation gives wrong asymptotic expression for ∆𝐸𝑠(𝑅), 𝑅 → ∞,
see Phys. Rev. 134, A362, 1964 for more information.

https://journals.aps.org/pr/abstract/10.1103/PhysRev.134.A362

