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Comment. Note that since these lecture notes are part of a manuscript, much of the language
used here follows that of a book, with reference to chapters, sections, etc. In addition, some
material in the notes may be more advanced, or will not directly be related to discussions in class.
Please view these parts as stimulating extensions, where you are welcome to contact me about
questions and relevant references.

Problem 2.1 (Two electrons— 2 points). Consider the simplest multi-electron problem, namely
the two electron problem. Let us introduce notations

|k;q⟩ ≡ 1√
2

[|k ↑⟩1 |q ↓⟩2 − |q ↓⟩1 |k ↑⟩2] .

|±⟩ ≡ 1√
2

[|k;q⟩ ± |q;k⟩] .

1. What is the total spin of |k;k⟩?

2. What is the total spin of |+⟩ and |−⟩?

Problem 2.2 (Entropy — 2 points). Derive the following expression for the entropy of the free
electron system.

𝑆 = −
ˆ

𝑉 𝑑3k

4𝜋3
[𝑛𝐹 ln𝑛𝐹 + (1 − 𝑛𝐹 ) ln(1 − 𝑛𝐹 )] ,

where 𝑛𝐹 = 𝑛𝐹 (𝜀k − 𝜇) is the Fermi function, and 𝜇 is the chemical potential. You may use
expression for the Grand canonical ensemble free energy Ω = Ω(𝜇, 𝑉, 𝑇 ) as your starting point.

Ω = −𝑇

ˆ
𝑉 𝑑3k

4𝜋3
ln

[︂
1 + exp

𝜇− 𝜀k
𝑇

]︂
, 𝜀k ≡ ~2k2

2𝑚
.

Problem 2.3 (Equation of state — 3 points). In that problem 𝑃 is the pressure defined through
the Grand canonical ensemble free energy Ω = Ω(𝜇, 𝑉, 𝑇 ) as

𝑃 = −
(︂
𝜕Ω

𝜕𝑉

)︂
𝜇,𝑇

.
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1. (1 point) Show that 𝑃 (𝜇, 𝑇 ) is a homogeneous function of degree 5/2 in its variables 𝜇, 𝑇 .
In other words, show that the following relation holds.

𝑃 (𝜆𝜇, 𝜆𝑇 ) = 𝜆5/2𝑃 (𝜇, 𝑇 ).

2. (1 point) Show that (︂
𝜕𝑃

𝜕𝜇

)︂
𝑇

= 𝑛 and
(︂
𝜕𝑃

𝜕𝑇

)︂
𝜇

= 𝑠.

3. (1 point) Derive equation of state of a free electron gas

𝑃 =
2

3
𝑢,

where 𝑢 = 𝐸/𝑉 is the internal energy per volume.

Remark. Heat capacity of real metals behaves (see Figure 1) at low temperatures as 𝐶 ∼ 𝛾𝑇+𝛼𝑇 3,
where linear–in–𝑇 contribution comes from electrons and cubic term appears due to energy of
lattice vibrations — energy of phonons. Naturally, phonon contributions becomes dominant in
insulators and semiconductors, so it is important to include it into consideration. In the next
problems we will calculate cubic contribution from electrons, derive an expression for phonon
heat capacity within Debye model and compare them.

Figure 1: (Borrowed from Kittel) Experimental heat capacity values for potassium, plotted as
𝐶/𝑇 versus 𝑇 2. After W. H. Lien and N. E. Phillips.

Problem 2.4 (Correction to the specific heat of electron gas — 4 points). Compute the 𝑇 3

contribution to the specific heat for a free electron gas. In fact, show that

∆𝑐𝑉 = 𝐴𝑛𝑘𝐵

(︂
𝑘𝐵𝑇

𝜖𝐹

)︂3

and, calculate the prefactor 𝐴.

Problem 2.5 (Phonon heat capacity — 3 points). Phonons have linear energy–momentum
relation 𝜀k ≡ ~𝜔k = 𝑐|k|, where 𝑐 is the speed of sound (we only consider acoustic phonons and
disregard optical phonons). While real phonons have linear dispersion only at the center of the
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Brillouin zone, Debye model assumes that such relation holds for all momenta such that |k| < 𝑘𝐷,
where 𝑘𝐷 is Debye wavevector, which is determined from the following normalization condition.
One acoustic branch can host as many phonons as there are primitive cells (phonons are bosons
— each one occupies its own slot in momenta space).

𝑁𝑐 =

ˆ
|k|<𝑘𝐷

𝑉 𝑑3k

(2𝜋)3
.

Here 𝑁𝑐 is the number of crystal’s primitive cells. Number of phonons, however, is not fixed (not
conserved), hence chemical potential 𝜇 = 0.

There are three acoustic modes in three–dimensional solid, as many as there are displacement
directions. Hence total energy is

𝐸 = 3

ˆ
|k|<𝑘𝐷

𝑉 𝑑3k

(2𝜋)3
𝜀k𝑛𝐵(𝜀k), 𝑛𝐵(𝜀) ≡ (𝑒𝜀 − 1)−1 .

1. (1 point) Find expression for the Debye wavevector and corresponding energy scale —
Debye temperature Θ = 𝑐𝑘𝐷.

2. (1 point) Write down an expression for the heat capacity in the following form

𝐶𝑉 =

(︂
𝜕𝐸

𝜕𝑇

)︂
𝑉

= 𝑁𝑐𝑘𝐵 × 𝐹

(︂
Θ

𝑇

)︂
,

where 𝐹 is some dimensionless function. Find asympotic expression for the 𝐶𝑉 at high
temperatures 𝑇 ≫ Θ (leading term only). Does your answer make sense from the point of
view of equipartition theorem?

3. (1 point) Find asympotic expression for the 𝐶𝑉 at low temperatures 𝑇 ≪ Θ, i.e. show
that

𝐶𝑉 ∝ 𝑁𝑘𝐵

(︂
𝑇

Θ

)︂3

, 𝑇 ≪ Θ

and calculate the prefactor. Find characteristic values for Debye and Fermi temperatures of
metals online and compare phonon heat capacity to cubic–in–𝑇 contribution from electrons.

BONUS PROBLEM

Problem 2.6 (Specific heat at constant pressure — 0 points). We emphasized many times in
class that in the lab we always measure the specific heat at constant pressure (𝑐𝑃 ), while in most
of our calculations we stop at calculating the specific heat at constant volume (𝑐𝑉 ). Rationalize
this process by showing that for electronic Fermi gas

𝑐𝑃
𝑐𝑉

= 1 +
𝜋2

3

(︂
𝑘𝐵𝑇

𝜖𝐹

)︂2

+ 𝒪
(︂
𝑘𝐵𝑇

𝜖𝐹

)︂4

.


