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Comment. Note that since these lecture notes are part of a manuscript, much of the language
used here follows that of a book, with reference to chapters, sections, etc. In addition, some
material in the notes may be more advanced, or will not directly be related to discussions in class.
Please view these parts as stimulating extensions, where you are welcome to contact us about
questions and relevant references.

Remark. For brevity, we set Boltzmann constant 𝑘𝐵 = 1 to unity in that problem set.

Problem 4.1 (Classical diamagnetism — 2 points). Ampére’s classical calculation of a magnetic
moment from a charge −|𝑒| particle circling in orbit is

m = −|𝑒|
2𝑐

[r× v]. (4.1.1)

The single–particle classical Hamiltonian of a free electron in magnetic field is:

ℋ =
1

2𝑚

(︂
p̂− |𝑒|

2𝑐
[r×H]

)︂2

Using Hamilton’s equations of motion, show the equivalence of Ampére’s calculation of m to the
expected result of

m = −𝜕𝐸

𝜕H
,

where 𝐸 is the energy of the particle. Identify the velocity and relate it to the canonical momentum
of a charged particle in magnetic field.

Remark. In the next problem we are going to calculate the diamagnetic contribution to the
magnetic susceptibility of electron gas. Its meaning is simple. In the presence of magnetic field
moving electrons experience Lorenz force that makes them go in a closed loop. Such loop creates
a magnetic moment (4.1.1), which points in the direction opposite of the magnetic field.

Problem 4.2 (Landau diamagnetism — 3 points). Using steps outlined below, calculate dia-
magnetic contribution to the magnetic susceptibility of the electron gas in metals at low fields
and temperatures 𝑇 ≪ 𝜖𝐹 (what magnetic field should be compared to?).
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1. (1 point) Hamiltonian of an electron in a metal in the presence of magnetic field H = 𝐻𝑧
(without Zeeman term) reads

ℋ̂ =
1

2𝑚*

(︂
𝑝 +

|𝑒|
𝑐
A

)︂2

Write down the energies 𝜀𝑛,𝑝𝑧 of such system (ignore spin), don’t forget the degeneracies
𝑔𝑛,𝑝𝑧 . You don’t need to solve the Schrodinger equation, but if you do, we suggest you use
Landau gauge. Pay attention to the fact that 𝑚* is the effective mass of electron.

2. (1 point) Grand canonical free energy for fermions is as usual

Ω = −2𝑇
∞∑︁

𝑝𝑧=−∞

∞∑︁
𝑛=0

𝑔𝑛,𝑝𝑧 ln

[︂
1 + exp

𝜇− 𝜀𝑛,𝑝𝑧
𝑇

]︂
.

Factor of 2 comes from spin. Calculate magnetic moment and from it the susceptibility
according to

m = −
(︂
𝜕Ω

𝜕H

)︂
𝜇,𝑉,𝑇

To simplify the calculation, we ignore dependence of chemical potential on temperature
since we are only interested in the leading term in 𝑇/𝜖𝐹 expansion.

You most probably want to use Euler-Maclaurin formula (write down the condition on
magnetic field that allows to apply it).

∞∑︁
𝑛=0

𝐹

(︂
𝑛 +

1

2

)︂
=

ˆ ∞

0

𝐹 (𝑥)𝑑𝑥 +
𝐹 ′(0)

24
+ . . .

3. (1 point) You have previously calculated paramagnetic contribution to the magnetic sus-
ceptibility of a metal (problem 3.2). Of course, in a real solid you always have both
𝜒 = 𝜒dia + 𝜒para. Compare the two.

𝜒dia

𝜒para
= ?

Remark. In problem 1.4 we have learned about quantum mechanism that holds atoms in a
lattice – exchange interaction. It so happens that the very same mechanism is responsible for the
existence of magnets. In a Hydrogen molecule there is an energy difference between state that
corresponds to a total spin of two electron being 𝑆 = 0 or 𝑆 = 1. That allows to write down
effective Hamiltonian in terms of spins of the electrons.

ℋ̂ = −
∑︁
𝑖,𝑗

𝐽𝑖,𝑗Ŝ𝑖 · Ŝ𝑗

Constant 𝐽 is called exchange integral, it is proportional to the difference 𝐸𝑎 − 𝐸𝑠. In the next
problem we will solve the simplest variation of such problem — Cluster Ising model — and discover
the mechanism of ferromagnetism.

https://en.wikipedia.org/wiki/Ferromagnetism
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Problem 4.3 (Ferromagnetism — 4 points). Consider a system of 𝑁 Ising spins 𝑠𝑖 = ± that
have all–to–all ferromagnetic (𝐽 > 0) interaction.

𝐸 = − 𝐽

2𝑁

∑︁
𝑖 ̸=𝑗

𝑠𝑖𝑠𝑗 −𝐻
𝑁∑︁
𝑖=1

𝑠𝑖,

Here 𝐽 is the exhange interaction constant and 𝐻 is the external magnetic field (𝜇𝐵 = 1). Such
system exhibits ferromagnetic transition: at the temperature below Curie temperature 𝑇 < 𝑇𝑐

all spins have the same value, while for 𝑇 > 𝑇𝑐 there is no net magnetization. To demonstrate
that, we ask you to calculate average spin value at finite temperature 𝑇 in the limit 𝑁 → ∞.

𝑚 ≡ 1

𝑁

𝑁∑︁
𝑖=1

⟨𝑠𝑖⟩ = ⟨𝑠1⟩ , ⟨𝑠1⟩ =
1

𝑍

∑︁
{𝑠𝑖}

𝑠1 exp

[︂
−𝐸

𝑇

]︂
.

We ask you to do it in two different ways.

1. (1 point) Find average spin 𝑚 = 𝑚(𝑇,𝐻 → +0) within mean–field approximation (you
assume that all spins except one are already equal to their average value 𝑚 and solve
effective problem for the last spin, condition of self–consistency defines the value of 𝑚).

2. (3 points) Calculate free energy 𝐹 = 𝐹 (𝑇,𝐻) exactly (in thermodynamic limit 𝑁 → ∞)

𝐹 = −𝑇 lim
𝑁→∞

ln𝑍, 𝑍(𝑇,𝐻) =
∑︁
{𝑠𝑖}

exp

[︂
−𝐸({𝑠𝑖} , 𝐻)

𝑇

]︂

and determine the magnetization as function of temperature and external field.

𝑚 = − 1

𝑁

(︂
𝜕𝐹

𝜕𝐻

)︂
𝑁,𝑇

Here are detailed steps that should help you to solve it.

(a) Rewrite the energy in terms of total spin 𝑆 =
∑︀𝑛

𝑖=1 𝑠𝑖 and decouple 𝑆2 using Hubbard–
Stratonovich transformation.

(b) Transform exponent of the sum of spins to the product of the exponents. You should
end up with the following expression.

𝑍 =

√︂
𝑁𝐽

2𝜋𝑇

ˆ ∞

−∞
exp

[︂
−𝑁

𝐽𝜇2

2𝑇
+ 𝑁 ln

(︂
2 cosh

𝐻 + 𝐽𝜇

𝑇

)︂]︂
𝑑𝜇.

(c) Compute integral over effective magnetization 𝜇 (dummy variable you have introduced
during Hubbard–Stratonovich) in the 𝑁 → ∞ limit using Laplace method (a.k.a. real
version of saddle point approximation).

(d) Find critical temperature 𝑇𝑐 and net magnetisation 𝑚 = 𝑚(𝑇,𝐻 → +0) (draw a rough
plot). Which order transition is this?

https://en.wikipedia.org/wiki/Hubbard\T2A\textendash Stratonovich_transformation
https://en.wikipedia.org/wiki/Hubbard\T2A\textendash Stratonovich_transformation
https://en.wikipedia.org/wiki/Laplace%27s_method
https://physics.stackexchange.com/questions/14639/how-is-the-saddle-point-approximation-used-in-physics
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Problem 4.4 (Screened potential — 6 points). Find physical solutions (i.e. vanishing at infin-
ity) of the following problems. These problems could be tackled by Fourier transform method.
Alternatively, you can guess the answer and check that it satisfies the equation.

1. (1 point) Poisson equation in 𝐷 = 3 dimensions

−∇2𝜑(r) = 4𝜋𝛿(r). r = (𝑥, 𝑦, 𝑧).

Hint. Integral form of a delta function.

𝛿(r) =

ˆ
𝑑3k

(2𝜋)3
𝑒𝑖k·r.

2. (1 point) Poisson equation in 𝐷 = 2 dimensions

−(𝜕2
𝑥 + 𝜕2

𝑦)𝜑(𝜌) = 4𝜋𝛿(𝜌), 𝜌 = (𝑥, 𝑦).

This problem requires introduction of a regularization of some sort.

3. (1 point) Screened Poisson equation in 𝐷 = 3 dimensions

(−∇2 + 𝜆−2)𝜑(r) = 4𝜋𝛿(r).

4. (1 point) Screened Poisson equation in 𝐷 = 2 dimensions.

(−∇2
𝑥,𝑦 + 𝜆−2)𝜑(𝜌) = 4𝜋𝛿(𝜌), 𝜌 = (𝑥, 𝑦).

Exact answer could be expressed through Macdonald function of zeroth order 𝐾0(𝑧), how-
ever, we only ask you to find asymptotic behavior of 𝜑(𝜌) at 𝜌 ≪ 𝜆 and 𝜌 ≫ 𝜆.

5. (2 points) Three–dimensional Poisson equation screened in two–dimensional plane.

(−∇2 + 2𝜆−1𝛿(𝑧))𝜑(𝜌, 𝑧) = 4𝜋𝛿(𝜌)𝛿(𝑧), 𝜌 = (𝑥, 𝑦). (4.4.1)

Exact answer for 𝜑(𝜌, 𝑧 = 0) could be expressed through Neumann 𝑁0(𝑧) and Struve
functions 𝐻0(𝑧), however, we only ask you to find asymptotic behavior of 𝜑(𝜌, 𝑧 = 0) at
𝜌 ≪ 𝜆 and 𝜌 ≫ 𝜆. Can you predict what it is going to be like without calculation?

Remark. To understand where equation (4.4.1) comes from, you can imagine that you have
a point charge, which lies within a plane of screening media, but half–space above and below
it is empty. Another system where such problem appears is a description of vortex in a thin
superconductor.


