PROBLEM SET #8 "Graphene" due on 5/31/2021

Physics-172 / Applied Physics-272 Introduction to Solid State Physics Spring quarter, 2021

Instructor: Aharon Kapitulnik — aharonk@stanford.edu Class Assistant: David Saykin — saykind@stanford.edu Departments of Applied Physics and of Physics

Problem 8.1 (Phonons - **8 points**). Consider one-dimensional chain of atoms connected through springs with stiffness K. There are two alternating types of atoms with masses m_1 and m_2 , distance between the atoms of the same mass is a (see Figure 1).

- 1. (4 points) Find dispersion relation $\omega(k)$ for the frequency of oscillations of atoms in onedimensional chain
- 2. (1 point) Find sound velocity.
- 3. (3 points) What happens in the limit $m_1 = m_2$?

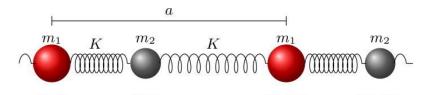


Figure 1: Model of 1D crystal.

Problem 8.2 (Graphene photodetector -14 **points**). The goal of this question is to evaluate graphene performance as a bolometer–type photodetector. Graphene is a two-dimensional carbon monolayer in which low-energy electronic states are well described by a linear band dispersion $E(\mathbf{p}) = v|\mathbf{p}|$ for electrons and $E(\mathbf{p}) = -v|\mathbf{p}|$ for holes. The velocity value is $v = 10^6$ m/s.

Consider a graphene monolayer sample of size 1 micron by 1 micron that absorbs one photon of energy 2.7 eV (blue light). Taking initial temperature to be T = 2 K, find the change in electron temperature resulting from photon absorption. Assume that the photon energy is shared among the electron degrees of freedom and ignore the effects of electron-lattice cooling. Please provide your answer in kelvin.

- 1. (6 points) Assume that graphene is undoped, i.e. Fermi level is exactly at the Dirac point.
- 2. (7 points) Now suppose that a small number of carriers are added to the band at a total density of $n = 10^{12}$ cm⁻². Repeat the analysis of part 1 to find the change in electron temperature after a single photon absorption.

Could your answers be used as reasonable estimates for a real graphene? Explain (1 point).

Problem 8.3 (Landau levels in graphene – 11 points). Solve stationary Schrödinger problem¹ for electrons in graphene in the presence of the magnetic field $\mathbf{B} = B\hat{z}$.

$$\hat{\mathcal{H}} = v\left(\hat{\boldsymbol{\sigma}}, \hat{\mathbf{p}} + \frac{|e|}{c}\mathbf{A}\right), \qquad \mathbf{A} = (-By, 0, 0).$$

1. (8 point) Find energies ε_n and eigenvectors $\psi_{n,k}$. You can use harmonic oscillator functions (a.k.a normalized Hermite functions) $\psi_n^{\text{osc}}(x)$ in your answer.

$$\psi_n^{\text{osc}}(x) = \frac{e^{-x^2/2}H_n(x)}{\sqrt{2^n n!}\sqrt{\pi}}$$

Pay attention to zeroth Landau level. Which eigenvector does it correspond to?

2. (3 points) How would your answer change for electrons in valley K'?

 $^{^1\}mathrm{In}$ case you are interested how to justify the Hamiltonian above, read on the Peierls substitution.