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Problem 4.1 (Screened potential — 6 points). Find physical solutions (i.e. vanishing at infin-
ity) of the following problems. These problems could be tackled by Fourier transform method.

Alternatively, you can guess the answer and check that it satisfies the equation.

1. (1 point) Poisson equation in D = 3 dimensions
—V2¢(r) = 47d(r). r = (z,y, 2).

Hint. Integral form of a delta function.

i(r) = /ng)?)eik'r.

2. (1 point) Poisson equation in D = 2 dimensions
—(0; +9))d(p) = 4nd(p).  p=(z,y).
This problem requires introduction of a regularization of some sort.

3. (1 point) Screened Poisson equation in D = 3 dimensions
(= V2 + A2)g(x) = 4md(x).
4. (1 point) Screened Poisson equation in D = 2 dimensions.

(=Vi, + A o(p) =4nd(p),  p=(z,y).

Exact answer could be expressed through Macdonald function of zeroth order Ky(z), how-

ever, we only ask you to find asymptotic behavior of ¢(p) at p < X and p > .

5. (2 points) Three-dimensional Poisson equation screened in two-dimensional plane.

(=V3,. T20715(2))0(p, 2) = 478(p)d(2),  p = (z,y).

Exact answer for ¢(p,z = 0) could be expressed through Neumann Ny(z) and Struve
functions Hy(z), however, we only ask you to find asymptotic behavior of ¢(p,z = 0) at
p < Aand p> A Can you predict what it is going to be like without calculation?
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Remark. To understand where equation (4.1.1) comes from, you can imagine that you have
a point charge, which lies within a plane of screening media, but half-space above and below
it is empty. Another system where such problem appears is a description of vortex in a thin
superconductor.

Problem 4.2 (Friedel oscillations — 4 points). Calculate local density of states (LDOS)

pla) =2 (o),

k<kp

where 1y (x) are one—particle wavefunctions with wavevector k and factor 2 comes from spin, for
the system of

1. (1 point) Fermions living on a half-line z > 0 with impenetrable wall ¢(+0) = 0.

2. (3 points) Fermions on a line with scattering center V (x) = %5(30), assume 7! < ¢ < kp.

You may want to consider fermions in box of finite size L, and then take a limit . — co, N — o0
such that n = N/L = const. Express your answer in terms of Fermi wavevector kp.

Problem 4.3 (Helicon — 3 points). There exists in metals a unique mode of propagation of
electromagnetic waves (discovered by R. Bowers et al) that is intimately related to the Hall effect.
Suppose we place a metal in a uniform magnetic field H = HZ (perpendicular to the surface of
the metal) and shine circularly polarized light on its surface E = Re Ey(& + i)e?** =% (light
propagates along the direction of magnetic field).

1. (1 point) Derive relation between current j = ¢(w)E and electric field inside the metal
within Drude approximation.

d e eln
_p:_B_|e|E_u[ExH}, j:_lp‘
dt T m Lc m
Express your answer in terms of Drude conductivity g and cyclotron frequency w..

2. (1 point) Using Maxwell equations find dispersion relation k*c* = e(w)w? for such waves,
i.e. determine e(w). Express your answer in terms of plasma frequency w, and cyclotron
frequency w..

(2a) Assume that w.7 > 1. At what frequencies light propagates inside the metal?

3. (1 point) Consider a very pure metal with resistivity p ~ 107 Q-cm and typical carrier
density n ~ 10?® cm™3 that we have placed in strong magnetic field of magnitude B = 5 T.
Provide numerical estimates for typical values of cyclotron frequency w,., plasma frequency
w, and mean-free time 7.

(3a) Show that in the regime of large field w.7 > 1 and low frequency w < w,, dispersion

relation reduces to w
C
w=—k22.
w2
P

This low frequency wave is known as helicon, and it is observed in many metals.



