problem set #6 "Electrons in crystal" due on 5/23/2021

Physics–172 / Applied Physics–272 Introduction to Solid State Physics Spring quarter, 2022

Instructor: Aharon Kapitulnik — aharonk@stanford.edu Class Assistant: David Saykin — saykind@stanford.edu Departments of Applied Physics and of Physics, Stanford University

Problem 6.1 (Zinc blende -2 points). Crystalline structure of ZnS is drawn on Figure [1.](#page-0-0)

- 1. (1 point) Identify Bravias lattice, primitive unit cell and primitive translation vectors a_i . Calculate the volume of the primitive unit cell. Lattice constant a is defined on Figure [1.](#page-0-0)
- 2. (1 point) Compute primitive translation vectors \mathbf{b}_i of reciprocal lattice $\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$. What Bravias type does reciprocal lattice belong to?

Figure 1: Zinc blende lattice

Problem 6.2 (Graphene spectrum $-$ 6 points). In graphene, three out of four $n = 2$ electrons of Carbon sp^2 -hybridize and form strong in–plane valence σ -bond, while forth electron's wave function barely overlaps with other electrons via so–called π –bonding (see Figure [2b\)](#page-1-0). Conductance of such electrons is well-described by tight–binding model.

$$
\hat{H} = -t \sum_{\langle i,j \rangle} \hat{c}^+(\mathbf{r}_i)\hat{c}(\mathbf{r}_j) = -t \sum_{\mathbf{r}} \sum_{j=1}^{3} \hat{c}_A^+(\mathbf{r})\hat{c}_B(\mathbf{r} + \boldsymbol{\delta}_j) + \text{h.c.},\tag{6.2.1}
$$

Here $t = 3$ eV is the nearest-neighbor hopping amplitude. Hexagonal (or honeycomb) lattice could be described as two triangular sublattices symmetrically displaced with respect to each other (see Figure [2a\)](#page-1-0).

(a) Primitive unit cell (blue) and translation vectors \mathbf{a}_1 , \mathbf{a}_2 of the hexagonal lattice.

(b) Illustration of in–plane σ –bonds and out–of– plane π -bonds that are formed by valence electrons.

Figure 2: Graphene lattice and electron orbitals.

- 1. (3 points) Find the spectrum of Hamiltonian [\(6.2.1\)](#page-0-1).
- 2. (1 point) Show that there are two points in Brillouin zone K , K' where energy bands touch each other. In the vicinity of these points (called valleys) effective Hamiltonian has the form of 2D Dirac Hamiltonian.

$$
\mathcal{H}_{\mathbf{K}+\mathbf{k}} \approx \hbar v_F (\sigma_x k_x + \sigma_y k_y).
$$

Calculate numerical value of Fermi velocity v_F if hopping amplitude $t = 3$ eV and carbon– carbon distance $a = 1.42$ Å.

- 3. (1 point) Where is the Fermi level in graphene? Is it a metal or an insulator?
- 4. (1 points) Introduce next nearest–neighbor hopping (with amplitude $t' = 0.3$ eV). Describe how it modifies electronic spectrum. Does it change the position of Fermi energy with respect to the conical points? Does it change Fermi velocity?

Problem 6.3 (Emery model -6 points). It turns out that electronic properties of copper–based high- T_c supercondutors (a.k.a cuprates) are well described by valence electrons in Cu–O plane.

Consider a two dimensional square lattice illustrated on Figure [3.](#page-2-0) Imagine that the only relevant electron are those on $d_{x^2-y^2}$ orbitals of copper and p_x and p_y orbitals of oxygen. Hopping amplitudes t_{ij} are either $\pm t$ for jumps between neighboring oxygen atoms or $\pm t'$ for neighboring copper and oxygen atoms. Figure [3](#page-2-0) explains what determines the relative sign of these amplitudes.

$$
\hat{H} = \sum_{i} \begin{Bmatrix} \varepsilon_{\text{Cu}} \\ \varepsilon_{\text{O}} \end{Bmatrix} \hat{c}^{+}(\mathbf{r}_{i})\hat{c}(\mathbf{r}_{i}) + \sum_{\langle i,j \rangle}^{\text{Cu-O}} (\pm t')\hat{c}^{+}(\mathbf{r}_{i})\hat{c}(\mathbf{r}_{j}) + \sum_{\langle i,j \rangle}^{\text{Oxygen}} (\pm t)\hat{c}^{+}(\mathbf{r}_{i})\hat{c}(\mathbf{r}_{j}).
$$

Here ε_{Cu} and ε_{O} are self–energies of electrons on copper and oxygen atoms respectively. Following the steps outlined below, find electronic energy spectrum in cuprates.

- 1. (1 point) Determine primitive cell and translation vectors. How many atoms are in the primitive cell? Find dual vectors and determine the form of Brillouin zone.
- 2. (1 point) Produce Fourier transform and obtain 3×3 Bloch Hamiltonian \mathcal{H} .

Figure 3: CuO plane and relevant electron orbitals.

- 3. (2 points) Let $\varepsilon_{\text{Cu}} = \varepsilon_{\text{O}} = 0$ and $t' = t$. Find energy bands. Instead of writing cumbersome analytical expression, you're encouraged to provide a plot of $\varepsilon(\mathbf{k})$ for an answer. Since 3D plots are hard to read, we recommend using contour plots, color maps or plot of energy slices between the high–symmetry points (Γ, X, M) .
- 4. (2 points) Still assume $\varepsilon_{\text{Cu}} = \varepsilon_{\text{O}} = 0$ and $t' = t$. Imagine that there are 8/3 electrons per unit cell. At what energy is Fermi level located?

Problem 6.4 (Landau levels in graphene -4 points). Solve stationary Schrödinger problem^{[1](#page-2-1)} for electrons in graphene in the presence of the magnetic field $\mathbf{B} = B\hat{z}, B > 0$.

$$
\hat{\mathcal{H}} = v\left(\hat{\boldsymbol{\sigma}}, \hat{\mathbf{p}} + \frac{|e|}{c}\mathbf{A}\right), \qquad \mathbf{A} = (-By, 0, 0).
$$

1. (3 points) Find energies ε_n and eigenvectors $\psi_{n,k}$. You can use harmonic oscillator functions (a.k.a normalized Hermite functions) $\psi_n^{\text{osc}}(x)$ in your answer.

$$
\psi_n^{\text{osc}}(x) = \frac{e^{-x^2/2}H_n(x)}{\sqrt{2^n n! \sqrt{\pi}}}.
$$

Pay attention to zeroth Landau level. Which eigenvector does it correspond to?

2. (1 points) Compute energy difference between zeroth and first Landau level at $B = 1$ T. Express your answer in Kelvins.

¹In case you are interested how to justify the Hamiltonian above, read on the [Peierls substitution.](https://en.wikipedia.org/wiki/Peierls_substitution)