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Remark. For brevity, we set Boltzmann constant 𝑘𝐵 = 1 to unity in this problem set.

Problem 2.1 (Entropy — 4 points). Derive the following expression for the entropy of the free
electron system.

𝑆 = −
ˆ

𝑉 𝑑3k

4𝜋3
[𝑛𝐹 ln𝑛𝐹 + (1 − 𝑛𝐹 ) ln(1 − 𝑛𝐹 )] ,

where 𝑛𝐹 = 𝑛𝐹 (𝜀k − 𝜇) is the Fermi function, and 𝜇 is the chemical potential. You may use
expression for the Grand canonical ensemble free energy Ω = Ω(𝜇, 𝑉, 𝑇 ) as your starting point.

Ω = −𝑇

ˆ
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, 𝜀k ≡ ~2k2

2𝑚
.

Problem 2.2 (Equation of state — 6 points). In this problem 𝑃 is the pressure defined through
the Grand canonical ensemble free energy Ω = Ω(𝜇, 𝑉, 𝑇 ) as

𝑃 = −
(︂
𝜕Ω

𝜕𝑉

)︂
𝜇,𝑇

.

1. (2 points) Show that 𝑃 (𝜇, 𝑇 ) is a homogeneous function of degree 5/2 in its variables 𝜇,
𝑇 . In other words, show that the following relation holds.

𝑃 (𝜆𝜇, 𝜆𝑇 ) = 𝜆5/2𝑃 (𝜇, 𝑇 ).

2. (2 points) Show that (︂
𝜕𝑃

𝜕𝜇

)︂
𝑇

= 𝑛 and
(︂
𝜕𝑃

𝜕𝑇

)︂
𝜇

= 𝑠.

3. (2 points) Derive the following identity

𝐸 =
3

2
𝑃𝑉.

Remark. Heat capacity of real metals scales (see Figure 1) at low temperatures as 𝐶 ∼ 𝛾𝑇 +𝛼𝑇 3,
where linear–in–𝑇 contribution comes from electrons and cubic term appears due to energy of
lattice vibrations — phonons. Naturally, phonon contributions becomes dominant in insulators
and semiconductors, so it is important to include it into consideration. In the next problems we
will calculate cubic contribution from electrons, and later in the class we will derive an expression
for phonon heat capacity within Debye model and compare them.
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Figure 1: Experimental heat capacity values for potassium (Figure 9 in [1, Ch. 6]).

Problem 2.3 (Correction to the specific heat of electron gas — 6 points). Compute the 𝑇 3

contribution to the specific heat for a free electron gas. In fact, show that

𝑐𝑉 =
𝜋2

2
𝑛
𝑇

𝜖𝐹
+ 𝐴 · 𝑛

(︂
𝑇

𝜖𝐹

)︂3

+ . . . , 𝑇 ≪ 𝜖𝐹 ,

and calculate the prefactor 𝐴.

Hint. Use Sommerfeld expansion [2, §58].
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Problem 2.4 (Sommerfeld expansion in 2D — 6 points). Even though we live in a three–
dimensional world, physicists are able to create two-dimensional electron gas (2DEG). One way
to do it is to quantize motion in 𝑧–direction like it is done, for example, on interface of the
AlGaAs/GaAs heterostructure. Another way is to exfoliate a few–layered material like graphene.

1. (2 points) Derive the relation between electron density 𝑛 and Fermi wavevector 𝑘𝐹 and
calculate the density of states 𝑔(𝜖) of the free electron (there is no magnetic field) system
in two-dimensions.

2. (2 points) Show that except for the 𝑇 = 0 term, all other terms in the low temperature
expansion (a.k.a. the Sommerfeld expansion) of the electron density 𝑛(𝜇, 𝑇 ) vanish.

3. (2 points) Show that
𝜇 + 𝑇 ln

(︀
1 + 𝑒−𝜇/𝑇

)︀
= 𝜖𝐹

Explain how this formula reconciles with Sommerfeld expansion you’ve derived above.
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