problem set #3 "Magnetism of electron gas" due on 5/5/2023

Physics–172 / Applied Physics–272 Introduction to Solid State Physics Spring quarter, 2023

Instructor: Aharon Kapitulnik — aharonk@stanford.edu Class Assistant: David Saykin — saykind@stanford.edu Departments of Applied Physics and of Physics, Stanford University

Remark. For brevity, we set Boltzmann constant $k_B = 1$ to unity in this problem set.

Problem 3.1 (Pauli paramagnetism $-$ 6 points). Let's consider electron gas that interacts with magnetic field via Zeeman mechanism only (orbital field could be considered separately)

$$
\hat{\mathcal{H}} = \frac{\hat{p}^2}{2m} - m_z H, \qquad \hat{m}_z = -2\mu_B \hat{s}_z = -\mu_B \hat{\sigma}_z, \quad \mu_B = \frac{|e|\hbar}{2mc}.
$$

Compute magnetic susceptibility in the $T \ll E_F$ limit and small enough magnetic field (what it should be compared to for $D = 2$? for $D = 3$?). For the sake of exercise, we ask you to do the calculation using canonical ensemble free energy $F = \Omega + \mu N$.

$$
\mathbf{m}=-\frac{1}{V}\left(\frac{\partial F}{\partial \mathbf{H}}\right)_{N,V,T}
$$

.

Figure 1: De Haas—van Alphen effect in GaAs $[1, 2]$ $[1, 2]$ $[1, 2]$, $T = .3$ K, $n = 4.75 \times 10^{11}$ cm⁻², $m^* = .067 m_e$.

Problem 3.2 (Landau diamagnetism of $2DEG - 12$ points). Calculate orbital magnetic moment **m** of two–dimensional electron gas assuming the following hierarchy of scales^{[1](#page-1-0)}

- 1. (4 points) $\mu_B^* H \ll T \ll \epsilon_F$ (orbital diamagnetism).
- 2. (6 points) $T = 0$, $\mu_B^* H \ll \epsilon_F$ (quantum oscillations)
- 3. (2 points) Compare your answer for magnetization with measurements of dHvA in GaAs shown on Figure [1](#page-0-0) $[1, 2]$ $[1, 2]$ $[1, 2]$.

You most probably want to use Grand canonical free energy as your starting point

$$
\Omega = -2T \sum_{n=0}^{\infty} g_n \ln \left[1 + \exp \frac{\mu - \varepsilon_n}{T} \right], \qquad \mathbf{m} = -\frac{1}{S} \left(\frac{\partial \Omega}{\partial \mathbf{H}} \right)_{\mu, S, T}.
$$

where g_n is a degeneracy of ε_n and factor of 2 comes from spin.

Hint. Remember when you can apply Euler–Maclaurin and Poisson summation formulas.

$$
\sum_{n=0}^{\infty} F\left(n + \frac{1}{2}\right) = \int_0^{\infty} F(n)dn + \frac{F'(0)}{24} + \dots
$$

$$
\sum_{n=0}^{\infty} F\left(n + \frac{1}{2}\right) = \int_0^{\infty} F(n)dn + 2 \operatorname{Re} \sum_{k=1}^{\infty} (-)^k \int_0^{\infty} e^{i2\pi kx} F(x) dx.
$$

Remark. In **problem set** $\#1$ we have learned about quantum mechanism that holds atoms in a lattice – exchange interaction. It so happens that the very same mechanism is responsible for the existence of magnets. In a Hydrogen molecule there is an energy difference between state that corresponds to a total spin of two electron being $S = 0$ or $S = 1$. That allows to write down effective Hamiltonian in terms of spins of the electrons.

$$
\hat{\mathcal{H}} = -\sum_{i,j} J_{i,j} \hat{\textbf{S}}_i \cdot \hat{\textbf{S}}_j
$$

Constant *J* is called exchange integral, it is proportional to the difference $E_a - E_s$. In the next problem we will solve the simplest variation of such problem — Cluster Ising model — and discover the mechanism of [ferromagnetism.](https://en.wikipedia.org/wiki/Ferromagnetism)

Problem 3.3 (Ferromagnetism – 8 points). Consider a system of N Ising spins $s_i = \pm$ that have all–to–all ferromagnetic $(J > 0)$ interaction.

$$
E = -\frac{J}{2N} \sum_{i \neq j} s_i s_j - H \sum_{i=1}^{N} s_i,
$$

Here *J* is the exchange interaction constant and *H* is the external magnetic field ($\mu_B = 1$). Such system exhibits ferromagnetic transition: at the temperature below Curie temperature $T < T_c$ all spins have the same value, while for $T > T_c$ there is no net magnetization. To demonstrate that, we ask you to calculate average spin value at finite temperature T in the limit $N \to \infty$.

$$
m \equiv \frac{1}{N} \sum_{i=1}^{N} \langle s_i \rangle = \langle s_1 \rangle, \qquad \langle s_1 \rangle = \frac{1}{Z} \sum_{\{s_i\}} s_1 \exp\left[-\frac{E}{T}\right].
$$

We ask you to do it in two different ways.

¹Remember that Bohr magneton $\mu_B = 58 \mu$ eV/T = 0.67 K/T.

- 1. (2 points) Find average spin $m = m(T, H \rightarrow +0)$ within mean-field approximation (you assume that all spins except one are already equal to their average value m and solve effective problem for the last spin, condition of self-consistency defines the value of m).
- 2. (6 points) Calculate free energy $F = F(T, H)$ exactly (in thermodynamic limit $N \to \infty$)

$$
F = -T \lim_{N \to \infty} \ln Z, \qquad Z(T, H) = \sum_{\{s_i\}} \exp \left[-\frac{E(\{s_i\}, H)}{T} \right]
$$

and determine the magnetization as function of temperature and external field.

$$
m = -\frac{1}{N} \left(\frac{\partial F}{\partial H} \right)_{N,T}
$$

Here are detailed steps that should help you to solve it.

- (a) Rewrite the energy in terms of total spin $S = \sum_{i=1}^{n} s_i$ and decouple S^2 using [Hubbard–](https://en.wikipedia.org/wiki/Hubbard\T2A\textendash Stratonovich_transformation) [Stratonovich transformation.](https://en.wikipedia.org/wiki/Hubbard\T2A\textendash Stratonovich_transformation)
- (b) Transform exponent of the sum of spins to the product of the exponents. You should end up with the following expression.

$$
Z = \sqrt{\frac{NJ}{2\pi T}} \int_{-\infty}^{\infty} \exp\left[-N\frac{J\mu^2}{2T} + N\ln\left(2\cosh\frac{H+J\mu}{T}\right)\right] d\mu.
$$

(c) Compute integral over effective magnetization μ (dummy variable you have introduced during Hubbard–Stratonovich) in the $N \to \infty$ limit using [Laplace method](https://en.wikipedia.org/wiki/Laplace%27s_method) (a.k.a. real version of [saddle point approximation\)](https://physics.stackexchange.com/questions/14639/how-is-the-saddle-point-approximation-used-in-physics).

Find critical temperature T_c and net magnetization, make a sketch of $m = m(T, H \to +0)$. Which order transition is this?

References

- [1] M. P. Schwarz, D. Grundler, H. Rolff, M. Wilde, S. Groth, Ch. Heyn, and D. Heitmann. De Haas–van Alphen effect in a two-dimensional electron system. Physica E: Low-dimensional Systems and Nanostructures, 12(1):140–143, 2002. Proceedings of the Fourteenth International Conference on the Ele ctronic Properties of Two-Dimensional Systems.
- [2] M. P. Schwarz, M. A. Wilde, S. Groth, D. Grundler, Ch. Heyn, and D. Heitmann. Sawtoothlike de Haas–van Alphen oscillations of a two-dimensional electron system. Phys. Rev. B, 65:245315, Jun 2002.
- [3] L. D. Landau and E. M. Lifshitz. Statistical Physics, volume 5. Elsevier, 2013.
- [4] P. D. Grigoriev and I. D. Vagner. The de Haas-van Alphen effect in two-dimensional metals. arXiv:cond-mat/0009409, 2000.