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Remark. For brevity, we set Boltzmann constant 𝑘𝐵 = 1 to unity in this problem set.

Problem 3.1 (Pauli paramagnetism — 6 points). Let’s consider electron gas that interacts with
magnetic field via Zeeman mechanism only (orbital field could be considered separately)

ℋ̂ =
𝑝2

2𝑚
−𝑚𝑧𝐻, �̂�𝑧 = −2𝜇𝐵𝑠𝑧 = −𝜇𝐵�̂�𝑧, 𝜇𝐵 =

|𝑒|~
2𝑚𝑐

.

Compute magnetic susceptibility in the 𝑇 ≪ 𝐸𝐹 limit and small enough magnetic field (what it
should be compared to for 𝐷 = 2? for 𝐷 = 3?). For the sake of exercise, we ask you to do the
calculation using canonical ensemble free energy 𝐹 = Ω + 𝜇𝑁 .

m = − 1

𝑉

(︂
𝜕𝐹

𝜕H

)︂
𝑁,𝑉,𝑇

.

Figure 1: De Haas—van Alphen effect in GaAs [1, 2], 𝑇 = .3 K, 𝑛 = 4.75×1011 cm−2, 𝑚* = .067𝑚𝑒.
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Problem 3.2 (Landau diamagnetism of 2DEG — 12 points). Calculate orbital magnetic mo-
ment m of two–dimensional electron gas assuming the following hierarchy of scales1

1. (4 points) 𝜇*
𝐵𝐻 ≪ 𝑇 ≪ 𝜖𝐹 (orbital diamagnetism).

2. (6 points) 𝑇 = 0, 𝜇*
𝐵𝐻 ≪ 𝜖𝐹 (quantum oscillations)

3. (2 points) Compare your answer for magnetization with measurements of dHvA in GaAs
shown on Figure 1 [1, 2].

You most probably want to use Grand canonical free energy as your starting point

Ω = −2𝑇
∞∑︁
𝑛=0

𝑔𝑛 ln

[︂
1 + exp

𝜇− 𝜀𝑛
𝑇

]︂
. m = − 1

𝑆

(︂
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)︂
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.

where 𝑔𝑛 is a degeneracy of 𝜀𝑛 and factor of 2 comes from spin.
Hint. Remember when you can apply Euler–Maclaurin and Poisson summation formulas.
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Remark. In problem set #1 we have learned about quantum mechanism that holds atoms in a
lattice – exchange interaction. It so happens that the very same mechanism is responsible for the
existence of magnets. In a Hydrogen molecule there is an energy difference between state that
corresponds to a total spin of two electron being 𝑆 = 0 or 𝑆 = 1. That allows to write down
effective Hamiltonian in terms of spins of the electrons.

ℋ̂ = −
∑︁
𝑖,𝑗

𝐽𝑖,𝑗Ŝ𝑖 · Ŝ𝑗

Constant 𝐽 is called exchange integral, it is proportional to the difference 𝐸𝑎 − 𝐸𝑠. In the next
problem we will solve the simplest variation of such problem — Cluster Ising model — and discover
the mechanism of ferromagnetism.

Problem 3.3 (Ferromagnetism — 8 points). Consider a system of 𝑁 Ising spins 𝑠𝑖 = ± that
have all–to–all ferromagnetic (𝐽 > 0) interaction.

𝐸 = − 𝐽

2𝑁

∑︁
𝑖 ̸=𝑗

𝑠𝑖𝑠𝑗 −𝐻

𝑁∑︁
𝑖=1

𝑠𝑖,

Here 𝐽 is the exchange interaction constant and 𝐻 is the external magnetic field (𝜇𝐵 = 1). Such
system exhibits ferromagnetic transition: at the temperature below Curie temperature 𝑇 < 𝑇𝑐

all spins have the same value, while for 𝑇 > 𝑇𝑐 there is no net magnetization. To demonstrate
that, we ask you to calculate average spin value at finite temperature 𝑇 in the limit 𝑁 → ∞.

𝑚 ≡ 1

𝑁

𝑁∑︁
𝑖=1

⟨𝑠𝑖⟩ = ⟨𝑠1⟩ , ⟨𝑠1⟩ =
1

𝑍

∑︁
{𝑠𝑖}

𝑠1 exp

[︂
−𝐸

𝑇

]︂
.

We ask you to do it in two different ways.
1Remember that Bohr magneton 𝜇𝐵 = 58 𝜇eV/T = 0.67 K/T.
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1. (2 points) Find average spin 𝑚 = 𝑚(𝑇,𝐻 → +0) within mean–field approximation (you
assume that all spins except one are already equal to their average value 𝑚 and solve
effective problem for the last spin, condition of self–consistency defines the value of 𝑚).

2. (6 points) Calculate free energy 𝐹 = 𝐹 (𝑇,𝐻) exactly (in thermodynamic limit 𝑁 → ∞)

𝐹 = −𝑇 lim
𝑁→∞

ln𝑍, 𝑍(𝑇,𝐻) =
∑︁
{𝑠𝑖}

exp

[︂
−𝐸({𝑠𝑖} , 𝐻)

𝑇

]︂

and determine the magnetization as function of temperature and external field.

𝑚 = − 1

𝑁

(︂
𝜕𝐹

𝜕𝐻

)︂
𝑁,𝑇

Here are detailed steps that should help you to solve it.

(a) Rewrite the energy in terms of total spin 𝑆 =
∑︀𝑛

𝑖=1 𝑠𝑖 and decouple 𝑆2 using Hubbard–
Stratonovich transformation.

(b) Transform exponent of the sum of spins to the product of the exponents. You should
end up with the following expression.

𝑍 =

√︂
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2𝜋𝑇

ˆ ∞

−∞
exp

[︂
−𝑁

𝐽𝜇2
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+ 𝑁 ln

(︂
2 cosh
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𝑇

)︂]︂
𝑑𝜇.

(c) Compute integral over effective magnetization 𝜇 (dummy variable you have introduced
during Hubbard–Stratonovich) in the 𝑁 → ∞ limit using Laplace method (a.k.a. real
version of saddle point approximation).

Find critical temperature 𝑇𝑐 and net magnetization, make a sketch of 𝑚 = 𝑚(𝑇,𝐻 → +0).
Which order transition is this?
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