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Comment. In addition, some material in the notes may be more advanced, or will not directly be
related to discussions in class. Please view these parts as stimulating extensions, where you are
welcome to contact us about questions and relevant references.

Problem 5.1 (𝛿–Kronig–Penney model— 12 points). Consider a one dimensional crystal for
which the potential is a periodic array of delta-functions,

𝑉 (𝑥) =
~2𝑞
𝑚

∞∑︁
𝑛=−∞

𝛿(𝑥− 𝑛𝑎).

where 𝑎 is the lattice constant.

1. (Exact solution — 7 points) Compute the energies for this model. Draw a picture of the
band structure for positive and negative values of 𝑞.

2. (Tight–binding limit — 5 points) If 𝑞𝑎 is large and negative, there is a tightly bound
Wannier state 𝑤𝑛(𝑥) associated with each delta function. Find zero–order Wannier functions
and calculate the width of the energy band within tight–binding approximation. Also,
deduce the band width from exact solution you found before and compare the two.

Hint. Read Chapter 10 in [1] to learn how to derive tight–binding approximation in 1D.

Figure 1: The 𝛿-function Kronig-Penney Model.
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Problem 5.2 (Tight–binding chain— 8 points). Consider one–dimensional chain of nodes with
alternating hopping amplitudes between nearest neighbors 𝑡1, 𝑡2 ∈ R. Such system is known in
the literature as Su-Schrieffer-Heeger model.

ℋ =
∞∑︁

𝑖=−∞

𝑡1𝑐
+
2𝑖+1𝑐2𝑖 + 𝑡2𝑐

+
2𝑖+1𝑐2𝑖+2 + h.c.

Here h.c. stands for hermitian conjugate and 𝑐𝑖 are fermionic annihilation operators on site 𝑖.

1. (6 points) Compute the spectrum.

2. (2 point) Imagine that you have one electron per node. Is it a metal or an insulator?

Figure 2: SSH chain with different bonding strength between sublattices.

Problem 5.3 (Graphene spectrum — 9 points). In graphene, three out of four 𝑛 = 2 electrons of
Carbon 𝑠𝑝2–hybridize and form strong in–plane valence 𝜎–bond, while forth electron’s wave func-
tion barely overlaps with other electrons via so–called 𝜋–bonding (see Figure 3b). Conductance
of such electrons is well-described by tight–binding model.

�̂� = −𝑡
∑︁
⟨𝑖,𝑗⟩

𝑐+(r𝑖)𝑐(r𝑗) = −𝑡
SL∑︁
r

3∑︁
𝑗=1

𝑐+𝐴(r)𝑐𝐵(r + 𝛿𝑗) + h.c., (5.3.1)

Here 𝑡 = 3 eV is the nearest–neighbor hopping amplitude. Hexagonal (or honeycomb) lattice
could be described as two triangular sublattices symmetrically displaced with respect to each
other (see Figure 3a).

1. (6 points) Find the spectrum of Hamiltonian (5.3.1).

2. (2 points) Show that there are two points in Brillouin zone K, K′ where energy bands
touch each other. In the vicinity of these points (called valleys) effective Hamiltonian has
the form of 2D Dirac Hamiltonian.

ℋK+k ≈ ~𝑣𝐹 (𝜎𝑥𝑘𝑥 + 𝜎𝑦𝑘𝑦).

Calculate numerical value of Fermi velocity 𝑣𝐹 if hopping amplitude 𝑡 = 3 eV and carbon–
carbon distance 𝑎 = 1.42 Å.

3. (1 point) Where is the Fermi level in graphene? Is it a metal or an insulator?
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(a) Primitive unit cell (blue) and translation
vectors a1, a2 of the hexagonal lattice.

(b) Illustration of in–plane 𝜎–bonds and out–of–
plane 𝜋–bonds that are formed by valence electrons.

Figure 3: Graphene lattice and electron orbitals.

Problem 5.4 (Emery model — 10 points). It turns out that electronic properties of copper–
based high-𝑇𝑐 supercondutors (a.k.a cuprates) are well described by valence electrons in Cu–O
plane.

Consider a two dimensional square lattice illustrated on Figure 4. Imagine that the only
relevant electron are those on 𝑑𝑥2−𝑦2 orbitals of copper and 𝑝𝑥 and 𝑝𝑦 orbitals of oxygen. Hopping
amplitudes 𝑡𝑖𝑗 are either ±𝑡 for jumps between neighboring oxygen atoms or ±𝑡′ for neighboring
copper and oxygen atoms. Figure 4 explains what determines the relative sign of these amplitudes.

�̂� =
∑︁
𝑖

{︂
𝜀Cu

𝜀O

}︂
𝑐+(r𝑖)𝑐(r𝑖) +

Cu–O∑︁
⟨𝑖,𝑗⟩

(±𝑡′)𝑐+(r𝑖)𝑐(r𝑗) +

Oxygen∑︁
⟨𝑖,𝑗⟩

(±𝑡)𝑐+(r𝑖)𝑐(r𝑗).

Here 𝜀Cu and 𝜀O are self–energies of electrons on copper and oxygen atoms respectively. Following
the steps outlined below, find electronic energy spectrum in cuprates.

Figure 4: CuO plane and relevant electron orbitals.

1. (1 point) Determine primitive cell and translation vectors. How many atoms are in the
primitive cell? Find dual vectors and determine the form of Brillouin zone.
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2. (2 points) Produce Fourier transform and obtain 3 × 3 Bloch Hamiltonian ℋ.

3. (4 points) Let 𝜀Cu = 𝜀O = 0 and 𝑡′ = 𝑡. Find energy bands. Instead of writing cumbersome
analytical expression, you’re encouraged to provide a plot of 𝜀(k) for an answer. Since 3D
plots are hard to read, we recommend using contour plots, color maps or plot of energy
slices between the high–symmetry points (Γ, X, M).

4. (3 points) Still assume 𝜀Cu = 𝜀O = 0 and 𝑡′ = 𝑡. Imagine that there are 8/3 electrons per
unit cell. At what energy is Fermi level located?
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