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X Assigment on «Applications in Theoretical Physics»
Problem X.1 (Wick’s theorem). Consider a function of order parameters 𝜙1, 𝜙2,. . . , all of which are
normally distributed with zero mean and known variance ⟨𝜙2⟩, so that
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Your task is to deal with expression containing exponential and trigonometric functions of order param-
eters, such as

⟨cos𝜙1 cos𝜙2⟩ = exp
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.

Problem X.2 (Heisenberg antiferromagnet). Consider Heisenberg antiferromagnetic Hamiltonian with
periodic boundary conditions

�̂� =
𝑁∑︁
𝑘=1

ŝ𝑘 · ŝ𝑘+1, 𝑁 + 1 = 1.

Find the spectrum of �̂� for 𝑠 = 1
2

and 𝑁 = 2, 3, . . . , as well as for 𝑠 = 1 and 𝑁 = 2, 3, . . . How large
𝑁 can you achieve?

Extrapolate the ground state energy divided by number of spins 𝐸0/𝑁 and the value of the gap
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to large 𝑁 → ∞ for 𝑠 = 1
2

as well as 𝑠 = 1. Answer the following questions:

1) Is it correct that for 𝑠 = 1
2

lim
𝑁→∞

𝐸0/𝑁 = 1
4
− ln 2?

2) What is the value of lim
𝑁→∞

𝐸0/𝑁 for 𝑠 = 1?

3) Does the gap closes with 𝑁 → ∞ for 𝑠 = 1
2
? for 𝑠 = 1?

Problem X.3 (Landau levels in graphene). In the tight binding approximation effective Hamiltonian
of graphene can be written as
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Presence of magnetic field can be accounted for via Peierls substitution k ↦→ k− 𝑒
𝑐
A, where A is a vector

potential. Find energy levels in graphene in magnetic field as a function of k for different orientations
of the field B ‖ 𝑂𝑧, 𝑂𝑥, 𝑂𝑦.

Problem X.4 (Hubbard model). One of the rich model describing different phenomena in solid state
physics is Hubbard model
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Fermions live on 𝑁 × 𝑁 lattice with periodic boundary condition (try 𝑁 = 2, 3). Here, I simply ask
you to find quantum–statistically averaged number of fermions on the site⟨︀
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as a function of temperature 𝑇 = 1

𝛽
.
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Problem X.5 (Over–barrier reflection). Find the transmission coefficient for the over–barrier reflection
in the potential 𝑉 (𝑥) = −𝑥4. In other words, you need to obtain solution of[︂
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]︂
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that asymptotically behaves as
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𝑥
, 𝑥→ ∞.

and then connect it with the behavior at the left end.
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Problem X.6 (Anderson model). Simplest model describing impurities in conductors uses Hamiltonian
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∑︁
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where fermion operators 𝑐𝑖 are located on a line of size 𝑁 with periodic boundary conditions. Disorder
is presented via local «energies», which are uniformly distributed in [−𝑊,𝑊 ] interval. Find (averaged)
density of states in such model.
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